

Problems
and

Solutions

Problem Points

1 Ohm's Law 1

2 Pentagonal Numbers 2

3 DNI Letter 3

4 Oh! Yeah! 3

5 Disemvowelling 4

6 Table Officials 4

7 Blood Test 4

8 Collatz Conjecture 5

9 Doppler Effect 5

10 Everything But Me 5

11 Training R3-AD 5

12 Automatic Hangman 6

13 A Beautiful Mind 6

14 La Casa de Papel 6

15 Mesoamerican Pyramids 6

16 Acronymizer 7

17 Fixing Sentences 7

18 Framing 7

19 Golf Ball 7

20 Sudoku Friends 7

21 Close Encounters Of The String Kind 8

22 Martes Y Trece 8

23 Minesweeper 9

24 Synthetic Division 10

25 The Sheldon Prime 11

26 Chain Reaction 12

27 3D Box Drawing 13

28 Flags 14

29 Top Pizza 15

30 MotoHP 16

31 Time Is Gold 25

32 Mutant Mushrooms 30

33 Voxels 35

1

1 Ohm’s Law
1 point

Introduction

One of the basic laws of electrical circuits is Ohm's law which states that the current passing
through a resistor is proportional to the voltage over the resistance. That is, I = V / R.

Where the units are I = current in Amps, V = voltage in Volts, and R = resistance in Ohms.

While Roger is setting up his electrical circuit, he must find out the voltage needed to produce a
certain current for a given resistor. Can you write a simple program to help Roger to automate this
job?

Input

The input consists of two lines. Each one has a single positive integer where the first line represents
the current in Amps and the second line is the resistance in Ohms.

Output

The output will print the voltage needed to produce the desired current.

Example

Input

2

200

Output

400

Python

Read the current value

i = int(input())

Read the resistor value

r = int(input())

Calculate the voltage

v = i * r

Print the voltage

print(v)

2

2 Pentagonal Numbers
2 points

Introduction

Have you ever heard of pentagonal numbers? These numbers are defined by the sequence 1, 5, 12,
22, 35, 51, … It is also worthy to note that such pentagonal numbers can be represented following a
regular geometrical arrangement of equally spaced dots.

 *
 * *
 * * * * *
 * * * * * *
 * * * * * * * * * *
 * * * * * *
* * * * * * * * * *

1 5 12 22

The generalized pentagonal numbers are those of the form:

𝑷𝒏 =
𝒏 ∗ (𝟑 ∗ 𝒏 − 𝟏)

𝟐

Given this formula can you write a program to find out the number of dots for a given nth pentagonal
number?

Input

A single line with a positive number.

Output

A single line with the corresponding nth pentagonal number.

Example

Input

3

Output

12

3

C++

#include <iostream>

using namespace std;

int main() {

 int input;

 cin >> input;

 int result = ((input * (3 * input - 1))/ (2));

 cout << result;

 return 0;

}

4

3 DNI Letter
3 points

Introduction

A DNI is composed of a number (8 digits) and a letter at the end .

To establish the letter of a DNI you need to calculate the remainder when the number is divided by
23 and then convert that value to a letter using this table:

REMAINDER 0 1 2 3 4 5 6 7 8 9 10 11

LETTER T R W A G M Y F P D X B

REMAINDER 12 13 14 15 16 17 18 19 20 21 22

LETTER N J Z S Q V H L C K E

Given a number calculate the corresponding letter.

Input

The numerical part of a DNI (an 8 digit number)

Output

The corresponding letter

Example 1 Example 2

Input Input

12345678 26841269

Output Output

Letter: Z Letter: Q

5

Java

import java.lang.Math;

import java.util.Scanner;

public class DNIletter {

 public static void main(String[] args)

 {

 char[] letters = {'T', 'R', 'W', 'A', 'G', 'M', 'Y', 'F', 'P', 'D', 'X',

'B', 'N', 'J', 'Z', 'S', 'Q', 'V', 'H', 'L', 'C', 'K', 'E'};

 Scanner myInput = new Scanner(System.in);

 int number = myInput.nextInt();

 int remainder = number % 23;

 System.out.println("Letter: " + Character.toString(letters[remainder]));

 }

}

6

4 Oh! Yeah!
3 points

Introduction

Have you ever seen the movie "Ferris Bueller's Day Off" (1986)? It's a teen comedy about a high

school senior, Ferris Bueller, who fakes illness to stay home from school. This movie popularized the

song "Oh! Yeah!" by Swiss electronic music band Yello that lately was also used in some TV

advertising campaigns. Maybe you seen one of them... This song repeats the expression "Oh! Yeah!

several times but extending the pronunciation so that it could be transcribed as "Oooh! Yeeeaaah!"

Since listening to song lyrics repeating same expression can be quite boring, so why not code a

program to write out the expression with each vowel repeated as many times as indicated by the

input number.

Input

A positive integer number defining the number of vowels to be repeated.

Output

In a single line the expression "OH! YEAH!" but repeating each vowel the same number of times as
the input number.

Example

Input

3

Output

OOOH! YEEEAAAH!

7

Python

number = int(input());

for i in range(number):

 print("O", end='')

print("H! Y", end='')

for i in range(number):

 print("E", end='')

for i in range(number):

 print("A", end='')

print("H!")

8

5 Disemvoweling
4 points

Introduction

In a dystopian society of the future, vowels have been forbidden. Now humans have learnt to talk
without the need of vowel speech sounds. Only consonants are used. Such an "advance" has some
drawbacks. For example, people get angry as they cannot read old books because there are plenty
of vowels. To keep them happy you have been requested to create a program that removes vowels
from a given text. You just need to substitute the vowels with *. This way people will be able to read
old books, keep the ancient knowledge and be happy again. This is the art of disemvowelling.

Input

A text line containing words, numbers, white spaces, punctuation marks, question, and exclamation
marks, ...

Output

Same line as the input but replacing any vowel with an asterisk (*) symbol.

Example 1 Example 2

Input Input

Hello World! 2001: A Space Odyssey

Output Output

H*ll* W*rld! 2001: * Sp*c* *dyss*y

9

Python

text = input()

disemvoweledText = ""

def isVowel(letter):

 letter = letter.upper()

 if (letter == "A" or letter == "E" or

 letter == "I" or letter == "O" or

 letter == "U"):

 return True

 else:

 return False

for i in text:

 if isVowel(i):

 disemvoweledText = disemvoweledText + "*"

 else:

 disemvoweledText = disemvoweledText + i

print(disemvoweledText)

10

6 Table Officials
4 points

Introduction

The table officials in a basketball match are responsible for keeping track of each team's scoring,
timekeeping, individual and team fouls, player substitutions, team possession and the shot clock. By
the end of the match, you will help them to provide some data and statistics like the total amount of
points per player and their overall shooting effectiveness. You decide to make a simple program to
make the task easier.

Input

The input refers to the data of a single player and will be always four positive integer numbers split
into four lines where:

• The first number is the total of free throws scored with a value of one point.

• The second number is the total of field goals of two points.

• The third number is the total of field goals scored behind the three-point line.

• The fourth number is the total of shots performed during the match.

Output

A single line representing the total amount of points achieved by the player and their effectiveness
percentage (rounding down and without decimals).

Example 1 Example 2 Example 3

Input Input Input

1 1 5

6 0 3

2 1 2

12 9 13

Output Output Output

19 75% 4 22% 17 76%

11

C++

#include <iostream>

using namespace std;

int main() {

 float freeThrows, twoPoints, threePoints, shoots;

 cin >> freeThrows >> twoPoints >> threePoints >> shoots;

 float points = (freeThrows + (2 * twoPoints) + (3 * threePoints));

 float effectiveness = ((freeThrows + twoPoints + threePoints) / shoots) *

100;

 cout << points << " " << static_cast<int>(effectiveness) << "%";

 return 0;

}

12

7 Blood Test
4 points

Introduction

A blood test consists of an examination of a blood sample used in health care to determine
physiological and biochemical states to assess an individual’s general health. Once the sample is
analyzed, the laboratory compiles the results in a blood test report. This report details different
components in the blood and their levels. To easily read the results, each of the values is written next
to a healthy range. Some of the ranges depends on the gender of the individual.

Here's a typical range of results related to complete blood count:

Component Definition Normal range

Red blood cells Cells responsible for carrying oxygen throughout the body
male: 4.3–5.9 million/mm3
female: 3.5–5.5 million/mm3

White blood
cells

Immune system cells in the blood 4500–11000/mm3

Platelets The substances that control the clotting of the blood 150000–400000/mm3

Hemoglobin
Protein within the red blood cells that carries oxygen to organs
and tissues, and carbon dioxide back to the lungs

male: 13.5–17.5 g/dL
female: 12.0–16.0 g/dL

Hematocrit Percentage of blood made of red blood cells
male: 41–53%
female: 36–46%

Given the patient's gender and their five component levels can you code a program to check
whether any of the parameters is out of range?

Note: The limits of normal range are not included as normal values. For example, 4.3 million/mm3 red
blood cells for male IS NOT a normal value.

Input

The input consists of six lines:
The first line defines the gender of the patient: Male or Female.
The second line refers to the red blood cells expressed in a decimal value in million/mm3
The third line indicates the total of white blood cells per mm3
The fourth line reports the number of platelets per mm3
The fifth line is a decimal value defining the hemoglobin in grams/deciliter
The last line is for hematocrit, expressing percentage of blood made of red blood cells.

13

Output

A readable report stating whether the blood test is normal or if the patient needs to visit the doctor:
Red blood cells: NORMAL or VISIT THE DOCTOR
White blood cells: NORMAL or VISIT THE DOCTOR
Platelets: NORMAL or VISIT THE DOCTOR
Hemoglobin: NORMAL or VISIT THE DOCTOR
Hematocrit: NORMAL or VISIT THE DOCTOR

Example 1 Example 2

Input Input

Male Female

4.2 4.6

5900 4400

150001 300000

14.2 14.5

50 51

Output Output

Red blood cells: VISIT THE DOCTOR Red blood cells: NORMAL

White blood cells: NORMAL White blood cells: VISIT THE DOCTOR

Platelets: NORMAL Platelets: NORMAL

Hemoglobin: NORMAL Hemoglobin: NORMAL

Hematocrit: NORMAL Hematocrit: VISIT THE DOCTOR

Python

sex = input()

redBloodCells = float(input())

whiteBloodCells = int(input())

platelets = int(input())

hemoglobin = float(input())

hematocrit = int(input())

if sex == "Male":

 if redBloodCells > 4.3 and redBloodCells < 5.9:

 res = "NORMAL"

 else:

 res = "VISIT THE DOCTOR"

else:

14

 if redBloodCells > 3.5 and redBloodCells < 5.5:

 res = "NORMAL"

 else:

 res = "VISIT THE DOCTOR"

print("Red blood cells: " + res)

if whiteBloodCells > 4500 and whiteBloodCells < 11000:

 res = "NORMAL"

else:

 res = "VISIT THE DOCTOR"

print("White blood cells: " + res)

if platelets > 150000 and platelets < 400000:

 res = "NORMAL"

else:

 res = "VISIT THE DOCTOR"

print("Platelets: " + res)

if sex == "Male":

 if hemoglobin > 13.5 and hemoglobin < 17.5:

 res = "NORMAL"

 else:

 res = "VISIT THE DOCTOR"

else:

 if hemoglobin > 12 and hemoglobin < 16:

 res = "NORMAL"

 else:

 res = "VISIT THE DOCTOR"

print("Hemoglobin: " + res)

if sex == "Male":

 if hematocrit > 41 and hematocrit < 53:

 res = "NORMAL"

 else:

 res = "VISIT THE DOCTOR"

else:

 if hematocrit > 36 and hematocrit < 46:

 res = "NORMAL"

 else:

 res = "VISIT THE DOCTOR"

print("Hematocrit: " + res)

15

8 Collatz Conjecture
5 points

Introduction

The Collatz conjecture is one of the easiest to state but difficult to prove mathematical problems.
Consider a positive number greater than 1. If it’s odd, multiply it by 3 and add 1. If it’s even, simply divide
it by 2. Then apply the same rules to the new number you got. The conjecture is about what happens
as you keep repeating the process.

What will it happen? Does the number you start with affect the number you end up with? Should it
end or continue to infinity? Collatz conjectured that if you run this process long enough, all starting
values will lead to 1. Nowadays the conjecture has been verified up to 268... Can you write a program
to find out the resulting sequence when you apply collatz conjecture to a number?

Input

The input will be a single line containing a positive number greater than 1.

Output

The output will print the sequence of numbers obtained following the Collatz conjecture rules. The
numbers should be separated by characters " -> ". At the end print out the total number of steps to
reach 1.

Example 1

Input

6

Output

6 -> 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1 [8]

Example 2

Input

7

Output

7 -> 22 -> 11 -> 34 -> 17 -> 52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8
-> 4 -> 2 -> 1 [16]

16

C++

#include <iostream>

int main(void)

{

 uint32_t n;

 uint32_t steps = 0;

 std::cin >> n;

 while (n != 1) {

 std::cout << n << " -> ";

 if (n % 2 == 0)

 {

 n = n / 2;

 }

 else

 {

 n = 3 * n + 1;

 }

 steps = steps + 1;

 }

 std::cout << n;

 std::cout << " [" << steps << "]" << std::endl;

}

17

9 Doppler Effect
5 points

Introduction

Have you ever stood on the side of a road when a fast car drove past you? If you have then you
might have noticed that as the car approaches you, the sound of the car’s engine gets louder and
sounds different. The car doesn’t change its engine noise while it is moving, so what’s happening?
The change in the way you hear a noisy object as it moves toward or away from you is called the
Doppler effect.

It happens because sound moves in waves, known as sound waves, and its frequency gets higher
as the noisy object comes toward you. The frequency refers to the rate at which the waves reach
you. The sound waves in front of the noisy object bunch up with less space between them. So, the
waves that reach you are at a higher frequency, changing the way you hear the sound. This is known
as the apparent frequency (f’) and it can be calculated with this formula:

𝒇′ = 𝒇 ∗
𝒄 + 𝒗𝒓

𝒄 + 𝒗𝒔

where f is the actual frequency,
c is the speed of the sound waves in the medium,
vr is the velocity of the observer with respect to the medium and
vs is the velocity of the noisy object with respect to the medium. This velocity can be positive,
negative or zero depending its direction of travel relative to the observer.

18

Input

The input is composed by four integer values in this order:

• actual frequency in Hz

• speed of the sound waves in the medium in meters/second

• velocity of the observer in kilometres per hour

• velocity of the noisy object in kilometres per hour

Output

The apparent frequency observed with two decimals resolution in Hz.

Example 1 Example 2

Input Input

200 25

340 10

60

-50

108

36

Output Output

218.74 Hz 50.00 Hz

19

Python

actualFreq = int(input())

soundWavesSpeed = int(input())

vr = int(input()) # Speed in km/h

Convert it to m/s

vr = vr * 1000 / 3600

vs = int(input()) # Speed in km/h

Convert it to m/s

vs = vs * 1000 / 3600

observerFreq = actualFreq * (soundWavesSpeed +vr) /(soundWavesSpeed+vs)

print("{:.2f} Hz".format(round(observerFreq,2)))

20

10 Everything But Me
5 points

Introduction

Write a program that calculates a set of the sums and products of a given series of integers but with
each calculation excluding the integer that corresponds to its position in the order of the
calculations being undertaken (so for the first sum and product calculations the first integer is
excluded, and so on).

Input

Several lines, each containing an integer value until the character '#' marks the end of the input
sequence.

Output

The first line contains per each read integer position the sum of all the input values except itself.

The second line contains per each read integer position the product of all the input values except
itself.

Example 1

Input

5

6

7

-8

11

 HINT:
16 = 6 +7 + (-8) + 11
-3696 = 6 · 7 · (-8) · 11

Output

16 15 14 29 10

-3696 -3080 -2640 2310 -1680

21

Python

num = input()

numbers = []

while num != "#":

 numbers.append(int(num))

 num = input()

totalProduct = 1

totalSum = 0

for i in numbers:

 totalProduct = totalProduct * int(i)

 totalSum = totalSum + int(i)

res1 = ""

res2 = ""

for i in numbers:

 res1 = res1 + str(totalSum-int(i)) + " "

 res2 = res2 + str(totalProduct//int(i)) + " "

print(res1.rstrip())

print(res2.rstrip())

22

11 Training R3-AD
5 points

Introduction

In a galaxy far, far away, you are training the last model droid R3-AD to read regular English texts. R3-
AD already knows a subset of the alphabet and it is not able to distinguish uppercase and lowercase.
To consolidate its learning the droid must read a book. But as you can imagine R3-AD can read a
word only if it is formed exclusively by letters it already knows. To evaluate how it is improving its
reading capability you are curious about which words can be read and which cannot. Can you
quickly code a program that reports which words can be read by R3-AD?

Input

The first line contains the letters R3-AD can read. Every letter will appear only once.

The second line contains a positive number referring to the number of words in the book.

Then there will be a line per each word of the book.

Output

For each of the words, print a single line stating Yes in case R3-AD can read it, and No otherwise.

Example

Input

abcdefimnop

5

mine

done

far

End

May

Output

Yes

Yes

No

Yes

No

23

C++

#include <iostream>

#include <string>

#include <vector>

#include <cctype>

using namespace std;

int main() {

 string letters;

 cin >> letters;

 int lettersSize = letters.size();

 int nWords;

 cin >> nWords;

 string word;

 vector<string> words;

 for(int i = 0; i < nWords; i++) {

 cin >> word;

 words.push_back(word);

 }

 bool found;

 vector<bool> result;

 int size;

 for(int j = 0; j < nWords; j++) { //Words

 size = words[j].length(); //Word size

 for(int k = 0; k < size; k++) {

 found = false;

 for(int l = 0; l < lettersSize; l++) {

 if(letters[l] == tolower(words[j][k])) {

 found = true;

 }

 }

 if(!found) {

 result.push_back(false);

 break;

 }

 }

 if(found) {

 result.push_back(true);

 }

 }

 int resultSize = result.size();

24

 for(int m = 0; m < resultSize; m++) {

 if(result[m] == true) {

 cout << "Yes";

 }

 else{

 cout << "No";

 }

 if(m != resultSize-1) {

 cout << endl;

 }

 }

 return 0;

}

25

12 Automatic Hangman
6 points

Introduction

For sure you have played the classic Hangman game. It’s an ideal game to play with low resources,
you can play with just a paper and a pencil. It’s easy to learn how to play, every game doesn´t last
more than 3 minutes, and it can be very funny!

So, what we want to do is an Automatic hangman application that simulates games.

The rules are simple: There is a hidden word to guess, and the player has to say letters that they think
would be on the hidden word. If they miss a letter, they lose a life. For this simulation, the player has 7
lives, corresponding to the states of the game. When the 7 lives are lost, the game ends.

Input

The input consists of:

• The first line defines the word to guess in capital letters. This word must contain at least one
letter to guess.

• The second line is the sequence of letters that represents the player tries. Letters can be
repeated, so, if player repeats a wrong letter, they will lose another life. If they say a correct
letter twice or more, nothing changes.

26

Output

The output consists of:

• The initial hidden word, expressed in “_“.

• The final hidden word, where correct letters are shown.

• A final game status message:

STATUS MESSAGE

Word completely guessed Player wins!

Word not guessed completely, but player has lives Word not completed and player is still alive.

The player lost all lives Player loses.

• Number of lives when the game ends, expressed like Lives: numberOfLives

Example 1 Example 2

Input Input

HELLO HELLO

HELO OXEXX

Output Output

_____ _____

HELLO _E__O

Player wins!

Lives: 7

Word not completed and player is still alive.

Lives: 4

Example 3

Input

HELLO

ABCDEFGHI

Output

HE___

Player loses.

Lives: 0

27

C++

#include <iostream>

#include <string>

int main()

{

 std::string guessWord;

 std::cin >> guessWord;

 std::string guessLetter;

 std::cin >> guessLetter;

 int lives = 7;

 int lettersSolved = 0;

 int guessWordSize = guessWord.size();

 std::string hiddenWord = std::string(guessWordSize, '_');

 std::string solvedWord = std::string(guessWordSize, '_');

 for (int i = 0; i < guessLetter.size(); i++)

 {

 bool found = false;

 for (int j = 0; j < guessWord.size(); j++)

 {

 if (guessWord[j] == guessLetter[i])

 {

 found = true;

 solvedWord[j] = guessLetter[i];

 lettersSolved++;

 }

 }

 if (!found)

 lives--;

 if ((lives == 0) || (lettersSolved == guessWordSize))

 break;

 }

 std::cout << hiddenWord << std::endl;

 std::cout << solvedWord << std::endl;

 if (lettersSolved == guessWordSize)

 std::cout<< "Player wins!";

 else if (lives > 0)

 std::cout<< "Word not completed and player is still alive.";

 else

 std::cout<< "Player loses.";

28

 std::cout << std::endl << "Lives: " << lives << std::endl;

 return 0;

}

29

13 A Beautiful Mind
6 points

Introduction

The movie "A beautiful mind" (2001) is a biography of mathematician John Nash. In 1994 he won the
Nobel prize in Economics. He also made contributions to game theory, differential geometry and
partial differential equations.

As part of his obsession with numerology he focused on bijective base-26 system where latin
alphabet letters "A" to "Z" are used to represent the 26-digit values one to twenty-six as A=1, B=2,
C=3, ..., Z=26. And what is next to Z? Quite simple, just AA=27, AB=28, and so on. In short, each digit
position represents a power of twenty-six. Accordingly, we have that ABCD represents 1 · 263 + 2 ·
262 + 3 · 261 + 4 · 260 = 19010.

This maybe sounds strange , but it is the same system that many spreadsheets use to assign labels
to their columns.

Can you write code to convert inputs between positive numbers and base-26 system strings…or
the reverse?

Input

The input can be either a positive number or a base-26 system string.

Output

When the input is a positive number convert it to its corresponding base-26 system string. In case
the input is a base-26 system string then convert the output to the positive number.

Example 1 Example 2

Input Input

ABC 54

Output Output

731 BB

30

Python

Read input as string

value = str(input())

if (value.isdigit()):

 # Converting from number to base-26

 number = int(value)

 res = number

 string = ""

 while number > 0:

 res = number % 26

 number = number // 26

 # Beware of the case when number is multiple of 26, then the remainder and

quotient must shifted since

 # our set begins with 1 instead of 0. Remember that 1 matches with A, 2

with B, ... and 26 with Z.

 if res == 0:

 res = res + 26

 number = number - 1

 string = chr(res+64) + string

 print(string)

else:

 # Converting from base-26 to number

 string = value

 value = 0

 power = 0

 # String is reversed to simplify how the traverse is done increasing the

power digit after digit

 for i in reversed(string):

 value = (ord(i) - 64) * pow(26, power) + value

 power = power + 1

 print(value)

31

14 La Casa de Papel
6 points

Introduction

The main safe-deposit of the Royal Mint is extremely secured against robbery. The famous group

led by the Professor that wears Salvador Dalí masks has attempted several money heists.

To avoid these kinds of assaults, the main door allowing access to new banknotes is protected by a

list of keywords that must be entered in proper order. To test the current level of security, you

receive the sequence of keywords used but knowing that the words were shifted a certain number

of positions. Can you write a program that prints out the list of keywords in the correct order to open

the door?

Input

Several lines, each with a single keyword
Followed by a positive number referring to the shift to be applied. Such number is lesser than the
number of keywords received.

A single character '#' marks the end of the input lines

Output

The list of the keywords properly shifted.

32

Example

Input

Berlin

Madrid

Paris

Rome

London

Tokyo

2

Output

Paris

Rome

London

Tokyo

Berlin

Madrid

C++

#include <iostream>

#include <string>

#include <vector>

using namespace std;

int main() {

 string input;

 vector<string> keywords;

 int shifting;

 while(cin >> input && input != "#"){

 if(isdigit(input[0])) {

 shifting = stoi(input);

 }

 else{

 keywords.push_back(input);

 }

33

 }

 int size = keywords.size();

 int position;

 for (int j = 0; j < size; j++) {

 if(j+shifting < size) {

 position = j+shifting;

 cout << keywords[position];

 if(j != size-1) cout << endl;

 }

 else{

 position = (j+shifting)-size;

 cout << keywords[position];

 if(j != size-1) cout << endl;

 }

 }

 return 0;

}

34

15 Mesoamerican Pyramids
6 points

Introduction

Dr. Jones, the world-renowned archeology professor, is investigating the pre-Columbian cultures
and civilizations located in Central America. Their architecture produced the Mesoamerican
pyramids. The most popular were built by Aztecs and Mayans. These structures, although similar to
the Egyptian pyramids, are distinguished by having flat tops and stairs ascending their faces. It is
important to note that the pyramids have layers and the number of steps per layer is the same on
all of its faces.

During the investigation, a book was found that contained the plans of hundreds of Mesoamerican
pyramids. Dr. Jones believes that most of the plans are real, but some of them are fake. He realized
in the fake plans that the number of stairs per layer is not the same on all of the faces. Because Dr.
Jones is very busy and given the clue he has pointed out, can you help him to detect fake
Mesoamerican pyramids?

Input

The first line gives the number of pyramids to analyse. Then for each pyramid a line with the
following information is provided: the name of the village in a single word, for the north face of the
pyramid the number of steps per each layer in ascending order separated with a white space, then
a separator “#”, and the same information in descending order for the south face.

Output

For each pyramid return a line stating if the number of steps per layer is the same in both faces.

35

Example

Input

2

Tenochtitlan 2 3 4 5 4 # 4 5 4 3 2

Teotihuacan 1 2 2 3 4 4 6 7 # 7 6 4 3 3 2 2 1

Output

Tenochtitlan has same number of steps for both faces

Teotihuacan has NOT same number of steps for both faces

Python

num = int(input())

for i in range(num):

 ok = True

 line = input().split()

 name = line[0]

 length = len(line)

 counter = 1

 j = line[counter]

 while j != "#":

 if j != line[length - counter]:

 ok = False

 break

 counter = counter + 1

 j = line[counter]

 if ok:

 print(name + " has same number of steps for both faces")

 else:

 print(name + " has NOT same number of steps for both faces")

36

16 Acronymizer
7 points

Introduction

You have a summer internship at a local newspaper. Your job consists of reviewing the news to
identify potential acronyms in the text. An acronym is an abbreviation formed from the initial letters
of other words and written as a single word. To make your life easier, you have decided to write a
program to do the job.

 HINT: To make things easier consider that there will not be two consecutive acronyms.

Input

A sentence with words separated by a single space, without commas and ended with a full stop.

Output

A sentence replacing the input sentence with the consecutive words that contain the first character
capitalized by its corresponding acronym.

Example 1

Input

Welcome to Code Wars held by Hewlett Packard in Barcelona site.

Output

Welcome to CW held by HP in Barcelona site.

Example 2

Input

They will travel to United States and visit the National Aeronautics Space

Administration.

Output

They will travel to US and visit the NASA.

37

Python

text = input()

outputText = ""

words = []

for i in text.split():

 # Store the words that have a capital letter that are acronym candidates

 if i[0].isupper():

 words.append(i)

 else:

 # Add to the output string the word read when there are no acronym

candidates stored

 if len(words) == 0:

 outputText += i + " "

 # Add to the output string the single word with a capital letter

 elif len(words) == 1:

 outputText += words[0] + " " + i + " "

 # Process the acronym candidates

 else:

 for w in words:

 outputText += w[0]

 outputText += " " + i + " "

 words = []

if len(words) > 0:

 for w in words:

 outputText += w[0]

 outputText += "."

print(outputText.rstrip())

38

17 Fixing Sentences
7 points

Introduction

A virus has infected your high school computer server, and it’s messing up the e-mail service. It is

attacking e-mail messages by randomly reversing some words. This is affecting students as they

cannot understand their homework. You decided to help your friends by providing them with a

mobile app that reverts the effects of the virus attack. Your app uses an internet dictionary to check

word by word their correctness in a sentence, and when a potential reversed word is detected, you

get its position within the sentence. With this job done, you just need to reverse those words to

resolve the trouble created by the virus.

Can you write a program that, given a sentence with reversed words and their positions, prints out
the fixed sentence?

Input

A line containing a single sentence with some words reversed.
Several lines with a single positive number describing the position of a reversed word.
A single character '#' marks the end of the input lines.

Output

A single line with the original sentence fixed.

Example 1

Input

Notice that this drow is reversed and this rehtona oot.

4

9

10

Output

Notice that this word is reversed and this another too.

39

Example 2

Input

Here we do not have a full pots

8

Output

Here we do not have a full stop

Python

sentence = input().split(" ")

wordToReverse = input()

while wordToReverse !="#":

 # Get the word

 pos = int(wordToReverse) - 1

 word = sentence[pos]

 # Reverse the given word

 reversedWord = word[::-1]

 # Consider the case of having a full stop at the end of a sentence

 if reversedWord[0] == ".":

 reversedWord = reversedWord[1:] + "."

 # Replace original word with the reversed word

 sentence[pos] = reversedWord

 # Get next word

 wordToReverse = input()

print(" ".join(sentence))

40

18 Framing
7 points

Introduction

A new app for messaging Internet Frames is being developed. In this app every single message is

printed having a word per line inside a frame like in this example.

##########
Hello #
World! #
##########

To make things easier you think about coding a program to build several Internet Frames one after

the other. The hight of the frame is defined by the number of words inside the Internet Frame. And

the width of a frame depends on the longest word in the message. When concatenating Internet

Frames of different width, print a single horizontal line between the frames with the wider size of

previous and next frame.

Input

A line or more with one or more words per line.
A single character '#' marks the end of the input lines.

Output

One or more rectangular frames containing the words of each line printed one per line in a

rectangular frame.

Example 1

Input

Hi! This is frame number one

This is the 2nd

Finally, the fantastic third frame

41

Output

##########
Hi! #
This #
is #
frame #
number #
one #
##########
This #
is #
the #
2nd #
#############
Finally, #
the #
fantastic #
third #
frame #
#############

Python

footer=""

Read lines from standard input

line = input()

while line != "#":

Get the single words

 words = line.split()

 longestWord = 0

For each line find the longest word to find the size of the frame

 for i in words:

 if len(i) > longestWord:

 longestWord = len(i)

 # Compose header

 header = "#"*(longestWord+4)

 # Print longest header or footer

 if len(header) > len(footer):

 print(header)

 else:

 print(footer)

 # Print words framed

42

 for i in words:

 print("# " + i + " "*(longestWord-len(i)) + " #")

 # Compose footer

 footer = "#"*(longestWord+4)

 # Read next line

 line = input()

Print footer

print(footer)

43

19 Golf Ball
7 points

Introduction

When a golf ball is hit, its flight follows a curved path known as parabola. The shape of the parabola

is affected by two main forces, gravity, and air resistance. To keep things easier, let’s assume that

air resistance as negligible and just consider gravity (9.8 m/s2).

Such movement is composed by a uniform rectilinear motion on the X-axis and an uniformly

accelerated rectilinear motion on the Y-axis. So, the distance formulas are:

𝑥 = 𝑥0 + 𝑣0 ∗ 𝑐𝑜𝑠(𝛼) ∗ 𝑡

𝑦 = 𝑦0 + 𝑣0 ∗ 𝑠𝑖𝑛(𝛼) ∗ 𝑡 − 1/2 ∗ 𝑔 ∗ 𝑡2

It is also assumed that the golf field is flat, that is the initial and final heights are equal.

Given a golf ball with a diameter of 42.7 millimetres hit at a certain angle and aiming to get the ball

inside a 3 meters circle around a target position, could you find out the maximum and minimum

speed that must be achieved providing a precision of two decimal places?

To help you in this task we recommend applying these formulas:

𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 3 + (0.0427/2)

𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 3 − (0.0427/2)

44

𝑚𝑖𝑛𝑇𝑖𝑚𝑒 = √
2 ∗ 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑠𝑖𝑛(𝛼)

𝑔 ∗ 𝑐𝑜𝑠(𝛼)

𝑚𝑎𝑥𝑇𝑖𝑚𝑒 = √
2 ∗ 𝑚𝑎𝑥𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑠𝑖𝑛(𝛼)

𝑔 ∗ 𝑐𝑜𝑠(𝛼)

𝑚𝑖𝑛𝑆𝑝𝑒𝑒𝑑 =
𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑐𝑜𝑠(𝛼) ∗ 𝑚𝑖𝑛𝑇𝑖𝑚𝑒

𝒎𝒂𝒙𝑺𝒑𝒆𝒆𝒅 =
𝒎𝒂𝒙𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆

𝒄𝒐𝒔(𝜶) ∗ 𝒎𝒂𝒙𝑻𝒊𝒎𝒆

 HINT: Don't forget that trigonometric functions are performed in radians!

Input

Two lines are provided.

The first line is a positive representing the target distance in meters.

The second line is also positive and defines the angle in degrees.

Output

There are also two output lines. The first line contains the maximum speed in meters per second.

And the second line is for the minimum speed in meters per second.

Example

Input

100

50

Output

The maximum speed is: 32.01 m/s.

The minimum speed is: 31.07 m/s.

45

Python

import math

We need a program that returns maximum and minimum speed of the ball

to get inside 3 meters circle around target when the initial angle is changed

initial (constant) values

g = 9.8

ball_diameter = 0.0427 # 42.7 mm

input

target_distance = int(input())

angle = int(input())

Student may use this manual method to find

the speed of the ball

min_distance = target_distance-3+(0.0427/2)

max_distance = target_distance+3-(0.0427/2)

min_time =

math.sqrt((2*min_distance*math.sin(math.radians(angle)))/(g*math.cos(math.radian

s(angle))))

max_time =

math.sqrt((2*max_distance*math.sin(math.radians(angle)))/(g*math.cos(math.radian

s(angle))))

min_speed = min_distance/(math.cos(math.radians(angle))*min_time)

max_speed = max_distance/(math.cos(math.radians(angle))*max_time)

printing maximum and minimum (initial) speed of the ball to get inside 3

meters circle around target

print ("The maximum speed is: " + "{:.2f}".format(max_speed) + " m/s.")

print ("The minimum speed is: " + "{:.2f}".format(min_speed) + " m/s.")

46

20 Sudoku Friends
7 points

Introduction

A Sudoku is a type of puzzle where you must fill a 9x9 grid with numbers from 1 to 9
with the following rules:

• Numbers cannot repeat in a row

• Numbers cannot repeat in a column

• Numbers cannot repeat in a box

This will help you understand our coordinate system:

- A box is a 3x3 region that divides the Sudoku grid in a 3x3, normally represented with a darker
outline.

- The rows are counted from top to bottom being the topmost number 1
- The columns are counted from left to right being the leftmost number 1
- The boxes are counted in reading order, being the top-left number 1 and the bottom-right

number 9

In Sudoku a cell is considered a friend if its value coincides with the number of its row, column, or box.
We need a program to count the number of friend cells in a given Sudoku.

COLUMNS

1 2 3 4 5 6 7 8 9

+ - - - - - - - + - - - - - - - + - - - - - - - +

ROWS 1 | 9 8 5 | 6 3 7 | 2 1 4 |

2 | 1 3 4 | 8 2 5 | 7 6 9 |

3 | 2 7 6 | 4 9 1 | 3 5 8 |

+ - - - - - - - + - - - - - - - + - - - - - - - +

4 | 3 4 2 | 1 7 8 | 6 9 5 |

5 | 6 1 8 | 9 5 3 | 4 7 2 |

6 | 7 5 9 | 2 6 4 | 1 8 3 |

+ - - - - - - - + - - - - - - - + - - - - - - - +

7 | 5 2 3 | 7 1 9 | 8 4 6 |

8 | 8 6 7 | 5 4 2 | 9 3 1 |

9 | 4 9 1 | 3 8 6 | 5 2 7 |

+ - - - - - - - + - - - - - - - + - - - - - - - +

BOX

1
BOX

2
BOX

3

BOX

4
BOX

5
BOX

6

BOX

7
BOX

8
BOX

9

47

Input

81 digits from 1 to 9 separated by a space representing a Sudoku.
The numbers in the Sudoku are assigned in reading order.

Ex.: The 15th digit will be in row 2, column 6, box 2.

Output

The total number of friend cells in the format:

Number of friends = number

Example

In this example, the cells in red are friends.

+------+-------+-------+
|9 8 5 | 6 3 7 | 2 1 4 |
|1 3 4 | 8 2 5 | 7 6 9 |
|2 7 6 | 4 9 1 | 3 5 8 |
+------+-------+-------+
|3 4 2 | 1 7 8 | 6 9 5 |
|6 1 8 | 9 5 3 | 4 7 2 |
|7 5 9 | 2 6 4 | 1 8 3 |
+------+-------+-------+
|5 2 3 | 7 1 9 | 8 4 6 |
|8 6 7 | 5 4 2 | 9 3 1 |
|4 9 1 | 3 8 6 | 5 2 7 |
+------+-------+-------+

Input (notice that although this text appears as three lines, the program input is a single line)

9 8 5 6 3 7 2 1 4 1 3 4 8 2 5 7 6 9 2 7 6 4 9 1 3 5 8 3 4 2 1 7 8 6 9 5 6 1 8

9 5 3 4 7 2 7 5 9 2 6 4 1 8 3 5 2 3 7 1 9 8 4 6 8 6 7 5 4 2 9 3 1 4 9 1 3 8 6

5 2 7

Output

Number of friends = 21

48

C++

#include <iostream>

#include <vector>

int getIndex(int r, int c)

{

 return r * 9 + c;

}

bool inRange(int v, int a, int b)

{

 if (v < a)

 return false;

 if (v > b)

 return false;

 return true;

}

int getBox(int row, int col)

{

 if (inRange(col, 1, 3) && inRange(row, 1, 3))

 return 1;

 if (inRange(col, 4, 6) && inRange(row, 1, 3))

 return 2;

 if (inRange(col, 7, 9) && inRange(row, 1, 3))

 return 3;

 if (inRange(col, 1, 3) && inRange(row, 4, 6))

 return 4;

 if (inRange(col, 4, 6) && inRange(row, 4, 6))

 return 5;

 if (inRange(col, 7, 9) && inRange(row, 4, 6))

 return 6;

 if (inRange(col, 1, 3) && inRange(row, 7, 9))

 return 7;

 if (inRange(col, 4, 6) && inRange(row, 7, 9))

 return 8;

 if (inRange(col, 7, 9) && inRange(row, 7, 9))

 return 9;

}

bool checkIfFriend(int v, int row, int col, int box)

{

 if (v == row || v == col || v == box)

 return true;

 else

 return false;

49

}

std::vector<int> readSudoku()

{

 std::vector<int> sudoku;

 for (int i = 0; i < 81; i++)

 {

 int v = 0;

 std::cin >> v;

 sudoku.push_back(v);

 }

 return sudoku;

}

int main()

{

 std::vector<int> sudoku = readSudoku();

 int friendCount = 0;

 for (int r = 0; r < 9; r++)

 {

 int row = r + 1;

 for (int c = 0; c < 9; c++)

 {

 int cell = sudoku[getIndex(r, c)];

 int col = c + 1;

 int box = getBox(row, col);

 if (checkIfFriend(cell, row, col, box))

 {

 friendCount += 1;

 }

 }

 }

 std::cout << "Number of friends = " << friendCount << std::endl;

 return 0;

}

50

21 Close Encounters Of The String Kind
8 points

Introduction

An unexpected event has happened to mankind! It has been confirmed that a radio signal has been
received from outer space. The signal does not contain any musical tones like in science-fiction
movies. Instead, it is formed by a series of strings of characters containing only single digit numbers,
letters and the number sign or hash (#).

These strings are being analyzed by top scientists in the world and the only clue up to now is that a
strange pattern has been found. That is, there are exactly 3 hashes between a pair of two digits that
add up to the number 10, as in these examples:

dhj1###9Adkjkldj

mcvnjkdf8##j#2dkL

aBc4thE#hjsldf#dJ#6dkjFkd#

Not all the messages follow this pattern. To quickly advance in this investigation a computer will be
used to classify all the strings that are been received. Your help is key to advancing the investigation.
Can you code a program that detects if a given message follows the alien pattern observed?

Note that the received message has been pre-processed to split it in smaller strings containing only
one possible alien message: if during the analysis you find a failure, you don’t need to keep analyzing
the string for potential new good patterns. For example: this string in not a valid input:

dj1#k###9adkjkldjdhj1###9adkjkldj
so, your program doesn’t need to consider it.

Input

The alien string pattern to be processed.

Output

True is printed when the pattern with exactly 3 hashes between a pair of two digits that add up to 10
is detected. Otherwise just print False.

Example 1 Example 2 Example 3

Input Input Input

dhj1###9adkjkldj dj1#k###9adkjkldj opdhdj3#kdf##6adldj

Output Output Output

True False False

51

Python

Auxiliar function to check whether a valid wall exists

def checkWall(word, start, end):

 subWord = word[start:end]

 count = 0

 for i in subWord:

 if i == "#":

 count = count + 1

 return count

Read the input

word = input()

Auxiliar variables

res = False

firstNumber = -1

secondNumber = -1

pos = 0

posFirstNumber = -1

posSecondNumber = -1

Look for first and second numbers along the input

for i in word:

 if i.isdigit():

 if firstNumber == -1:

 firstNumber = int(i)

 posFirstNumber = pos

 #print(pos, str(i))

 res = False

 elif secondNumber == -1:

 secondNumber = int(i)

 posSecondNumber = pos

 #print(pos, str(i))

 # Once the two numbers are identified

 # Check there is a wall between them

 count = checkWall(word, int(posFirstNumber)+1, int(posSecondNumber))

 if count == 3:

 # Check first and second number add 10

 if (firstNumber + secondNumber == 10):

 res = True

 # Continue looking for next case in the input

52

 firstNumber = -1

 secondNumber = -1

 posFirstNumber = -1

 posSecondNumber = -1

 else:

 res = False

 break

 pos = pos + 1

print(res)

53

22 Martes y Trece
8 points

Introduction

There is a popular superstition in Western countries that considers Friday the 13th is an unlucky day.

In Spanish-speaking countries the same happens when the 13th day of the month falls on Tuesday,

that is called "Martes y Trece". To avoid any potential unluckiness, you decided to find out in advance

when the next Martes y Trece will happen. To do so you will code a program that, given a year,

returns in temporal order the next Martes y Trece dates.

HINT: To help you to develop your program you can count on Zeller's congruence that
calculates the day of the week for a given calendar date.

1. Given day number D, month number M and year Y
2. If M is 1 or 2, add 12 to M, and subtract 1 from Y
3. Let C be the zero-based century (actually ⌊Y/100⌋) and K the year of the century

(Y mod 100).
4. Add together the integer parts of (2.6M-5.39), (K/4) and (C/4). (The integer part

of a number is the whole number part: integer part of 2.3 is 2, and of 6.7 is 6. Note
that the integer part of -1.7 is -2)

5. Add to this D and K, and subtract 2C
6. Find the remainder when this number* is divided by 7, then the remainder is the

day of the week where Sunday = 0, Monday = 1, Tuesday = 2, Wednesday = 3,
Thursday = 4, Friday = 5 and Saturday = 6

*Such resulting number can be a negative value and depending on the
language (C, C++ and Java) the operator '%' can lead to a misleading result. In
Python this operator returns the (modulus) remaining numbers by dividing first
number from the second. But same operator in C, C++ and Java strictly returns
the remainder so when handling with a negative divider the value returned is
negative.

Input

A single positive integer value representing the year to check.

Output

The list of dates following temporal order for that year that are Martes y trece.

54

Example 1 Example 2

Input Input

2023 1998

Output Output

Martes y Trece will occur on 13/6/2023 Martes y Trece will occur on 13/1/1998

Martes y Trece will occur on 13/10/1998

Python

def switch(h):

 return {

 0 : "Sunday",

 1 : "Monday",

 2 : "Tuesday",

 3 : "Wednesday",

 4 : "Thursday",

 5 : "Friday",

 6 : "Saturday",

 }[h]

def ZellerAlgorithm(D, M, Y):

 if (M < 3) :

 M = M + 12

 Y = Y - 1

 C = Y // 100

 K = Y % 100

 h = int(2.6*M-5.39) + K//4 + C//4 + D + K - 2*C

 h = h % 7

 return(switch(h))

day = 13

year = int(input())

for month in range(1,13):

 if (ZellerAlgorithm(day, month, year) == "Tuesday"):

 print ("Martes y Trece will occur on " + str(day) + "/" + str(month) + "/"

+ str(year))

55

23 Minesweeper
9 points

Introduction

A mission has been entrusted to you.

The government is having trouble delimiting safe zones in places where mines have been detected.

The objective is to indicate the level of each perimeter of the dangerous place. To do this, you will be

assigned to a control zone, and the places where the mines were detected.

The president's words are very clear: "We need you to show us a map of the area, indicating the level

of danger in terms of nearby mines, with 0 being an area that has no surrounding mines, and 8 an

area completely surrounded by mines. Good luck."

➜ ➜

➜ ➜

There are different area levels. You must differentiate between "Easy" areas, "Medium" areas and

"Hard" areas.

56

LEVEL DIMENSION

Easy 3 X 3

Medium 6 X 6

Hard 9 X 9

This is an example of a Hard Level area

➜

Input

The input consists of:

• The first line defines the area level to work in. (Easy, Medium or Hard)

• The second line is the number of mines on the area. (You must assume that there will always

be at least one mine, and never more than the area capacity)

• A sequence of LINES representing each mine coordinate (x, y)

 HINT: Notice that the first coordinate is (1,1).

Output

The output consists of the final map, representing the mines positions with the character "#", and

each sub-area with the integer of nearby mines.

57

Example 1 Example 3

Input

Hard

16

1 1

1 4

1 7

4 1

4 4

4 5

4 6

5 4

5 6

6 4

6 5

6 6

8 2

8 9

9 8

9 9

Output

#11#11#10

111111110

111232100

#12###200

113#8#300

002###200

112232111

1#100013#

1110001##

Input

Easy

1

1 1

Output

#10

110

000

Example 2

Input

Easy

3

1 1

1 3

2 2

Output

#3#

2#2

111

58

C++

#include <iostream>

#include <string>

using namespace std;

#define easy 3

#define medium 6

#define hard 9

int main() {

 int board_size; //easy, medium, hard

 string difficult;

 cin >> difficult;

 if(difficult == "Easy") {

 board_size = easy;

 }

 else if(difficult == "Medium") {

 board_size = medium;

 }

 else if(difficult == "Hard") {

 board_size = hard;

 }

 int board[board_size][board_size];

 int number_of_bombs;

 cin >> number_of_bombs;

 int bombs[number_of_bombs][2];

 int bombX, bombY;

 for(int i = 0; i < number_of_bombs; i++) {

 cin >> bombX >> bombY;

 bombs[i][0] = bombX - 1;

 bombs[i][1] = bombY - 1;

 }

 for(int j = 0; j < board_size; j++) {

 for(int k = 0; k < board_size; k++) {

 board[j][k] = 0;

 }

 }

 for(int l = 0; l < number_of_bombs; l++) {

 board[bombs[l][0]][bombs[l][1]] = -1;

59

 }

 int counter;

 for(int i = 0; i < board_size; i++) {

 for(int j = 0; j < board_size; j++) {

 counter = 0;

 if(board[i][j] != -1) {

 if(i-1 >= 0) {if(board[i-1][j] == -1) counter++;}

 if(i+1 < board_size) {if(board[i+1][j] == -1) counter++;}

 if(j-1 >= 0) {if(board[i][j-1] == -1) counter++;}

 if(j+1 < board_size) {if(board[i][j+1] == -1) counter++;}

 if(i-1 >= 0 && j-1 >= 0) {if(board[i-1][j-1] == -1) counter++;}

 if(i+1 < board_size && j+1 < board_size) {if(board[i+1][j+1] ==

-1) counter++;}

 if(i-1 >= 0 && j+1 < board_size) {if(board[i-1][j+1] == -1)

counter++;}

 if(i+1 < board_size && j-1 >= 0) {if(board[i+1][j-1] == -1)

counter++;}

 board[i][j] = counter;

 }

 }

 }

 for(int i = 0; i < board_size; i++) {

 for(int j = 0; j < board_size; j++) {

 if(board[i][j] == -1) {

 cout << "#";

 }

 else{

 cout << board[i][j];

 }

 }

 cout << endl;

 }

 return 0;

}

60

24 Synthetic Division
10 points

Introduction

What a name! The synthetic division refers to the method to divide a polynomial by the binomial
(𝑥 − 𝑐) where c is a constant. Consider the case of dividing

(−3𝑥3 + 5𝑥 − 2)/(𝑥 − 5)

Do not be afraid since Ruffini’s rule will help you to do so. Let’s see how it works with the previous
example. First, it begins by drawing a couple of crossed lines and put the 𝑐 value at left.

 |
 5|

 |

Next step is to write the coefficients of the polynomial ordered from highest to lowest degree at the
top. If some degree is missing, put it as a zero in its corresponding place. In this case the coefficients

are -3, for 𝑥3 , 5 for 𝑥 and -2 as an independent term.

 | -3 0 5 -2
 5|

 |

Now copy the coefficient of highest degree, which is -3, at the top just under horizontal line.

 | -3 0 5 -2
 5|

 | -3

Multiply this number by the value of 𝑐, which is 5, and the result is put next above the horizontal line.

 | -3 0 5 -2
 5| -15

 | -3

Then add the values in the second column, write the result under the horizontal line and repeat the
multiplication with the value of 𝑐.

 | -3 0 5 -2
 5| -15 -75

 | -3 -15

Again, it is time to add the numbers in the column and put the result down the horizontal line.

61

 | -3 0 5 -2
 5| -15 -75

 | -3 -15 -70

Repeat these steps until reaching the last column.

 | -3 0 5 -2
 5| -15 -75 -350

 | -3 -15 -70 -352

Last number at the right, that is -352, is the remainder of the division. And the polynomial quotient of
the division is built from the coefficient numbers that are previous to the remainder from left to right

providing as a result −3𝑥2 − 15𝑥 − 70

Now that you have refreshed how the Ruffini’s rule work, can you write a program to perform a
synthetic division?

Important note: The expected length of the horizontal line is 5 dashed characters per each number
plus an extra dash aligned with the vertical line.

Input

Two lines form the input. First line contains the coefficients of the dividend where a zero represents
any missing terms. Second line have a single number representing the c constant of the binomial
divisor.

Output

The final table after applying Ruffini’s rule. Please note that per each number a fixed size of 5
positions is defined in order to have the number properly printed in columns.

Example

Input

-3 0 5 -2

5

Output

 | -3 0 5 -2

 5| -15 -75 -350

 | -3 -15 -70 -352

62

Python

Read from input the polynomial coefs and the divisor

coefs = input().split()

coefs = [eval(i) for i in coefs]

divisor = int(input())

aux = []

res = []

Do the ruffini calculation

for i in range(len(coefs)):

 if i == 0:

 res.append(coefs[i])

 aux.append(" ")

 else:

 aux.append(divisor * int(res[i-1]))

 res.append(divisor * int(res[i-1]) + coefs[i])

Print out the results

row1 = " |"

row2 = f'{divisor:5d}' + "|"

row3 = " |"

for i in coefs:

 row1 = row1 + f'{i:5d}'

for i in aux:

 if i == " ":

 row2 = row2 + i

 else:

 row2 = row2 + f'{i:5d}'

for i in res:

 row3 = row3 + f'{i:5d}'

print(row1)

print(row2)

print("-"*len(row3))

print(row3)

63

25 The Sheldon Prime
11 points

Introduction

The 73rd episode of the TV series “The Big Bang Theory “ is very special for math lovers. In it, Sheldon
Cooper asks Raj, Howard, and Leonard “What is the best number? By the way, there is only one
correct answer”. Sheldon explains to them that the best number is 73 because 73 is the 21st prime
number. Its mirror, 37, is the 12th prime, which in turn is the mirror of 21!!! Mathematicians have named
this number the Sheldon prime.

Since we are math lovers, we would like to find if there are other numbers like 73 or that are
somehow related to it. To this end, we ask you to make a program that, given a natural number,
indicates what type of relation it has with the Sheldon prime according to these rules:

1. A number N is a Sheldon prime if:

o N is prime (e.g., 73)

o M, which is the mirror of N, is prime (37)

o The position of N in the prime numbers (21st) is the mirror of the position of M (12th)

2. A number N is a relative of the Sheldon prime if:

o N is prime (e.g., 769)

o M, which is the mirror of N, is prime (967)

o The position of N (136th) is a permutation (with the same digits) of the position of M

(163rd)

3. A number N is a close friend of the Sheldon prime if:

o N is prime (e.g., 1409)

o M, which is the mirror of N, is prime (9041)

o The position of N (223rd) and the position of M (1123rd) are primes

4. A number N is a friend of Sheldon prime if:

o N is prime (e.g., 17)

o M, which is the mirror of N, is prime (e.g., 71)

Notice that every number can only fit in one of the categories, giving higher priority to 1 (i.e., Sheldon
prime) and less priority to 4 (i.e., a friend).

64

Input

The input is a natural number

Output

The output is a message indicating the type of the input number with the format shown below:

• If it is a Sheldon prime the message is: "Number N is a Sheldon prime!"

• If it is a relative of Sheldon prime: "Number N is a Sheldon prime relative"

• If it is a close friend of Sheldon prime: “Number N is a close friend of Sheldon prime"

• If it is a friend of Sheldon prime: "Number N is a friend of Sheldon prime"

• If it is a number not related to a Sheldon prime: "Number N is not related to Sheldon prime"

Note that N should be the input number

Example 1 Example 2

Input Input

73

769

Output Output

Number 73 is a Sheldon prime! Number 769 is a Sheldon prime relative

Example 3 Example 4

Input Input

9

17

Output Output

Number 9 is not related to Sheldon prime Number 17 is a friend of Sheldon prime

Example 5

Input

1409

Output

Number 1409 is a close friend of Sheldon prime

65

C++

// Given a number, return if it is the Sheldon prime, a Sheldon prime relative,

a close friend, a friend, or nothing

//

// Sheldon prime:

// - N is prime

// - rev(N) is prime

// - pos(N) == rev(pos(rev(N)))

//

// Sheldon prime relative (medium/complex):

// - N is prime

// - rev(N) is prime

// - pos(N) == anyPermutation(pos(rev(N)))

//

// Close friend of Sheldon prime (easy/medium):

// - N is prime

// - rev(N) is prime

// - pos(N) and pos(rev(N)) are prime

//

// Friend of Sheldon prime (easy):

// - N is prime

// - rev(N) is prime

#include <iostream>

#include <vector>

#include <map>

#include <string>

#include <bits/stdc++.h>

using namespace std;

/*** Types ***/

// Type of numbers

enum Number_t

{

 SheldonPrime,

 Relative,

 CloseFriend,

 Friend,

 Other

};

66

/*** Local functions ***/

// Return whether a number is prime or not

bool isPrime(uint32_t num)

{

 if (num < 2)

 {

 return false;

 }

 bool isPrime = true;

 // Just to save some time

 if ((num > 2) && ((num % 2) == 0))

 {

 isPrime = false;

 }

 for (uint32_t i = 3; (i <= (num / 2)) && isPrime; i+=2)

 {

 if ((num % i) == 0)

 {

 isPrime = false;

 }

 }

 return isPrime;

}

// Reverse a given number

uint32_t reverseNumber(uint32_t num)

{

 string numStr = to_string(num);

 reverse(numStr.begin(), numStr.end());

 return static_cast<uint32_t>(stoul(numStr));

}

// Recursive function that adds to 'permutations' all the combinations given a

number prefix ('numPrefix') and a series of digits

void getAllPermutations(const vector<int> & digits, uint32_t numPrefix,

map<uint32_t, bool> & permutations)

67

{

 for (size_t i = 0; i < digits.size(); i++)

 {

 // New prefix

 uint32_t num = numPrefix * 10 + digits[i];

 // Remove the used digit from remainderDigits

 vector<int> remainderDigits = digits;

 remainderDigits.erase(remainderDigits.begin() + i);

 // Check if there are more digits to consume

 if (remainderDigits.size() > 0)

 {

 getAllPermutations(remainderDigits, num, permutations);

 }

 else

 {

 permutations[num] = true;

 }

 }

}

// Return all the possible permutations of 'num' in 'permutations'

void getPermutationList(uint32_t num, map<uint32_t, bool> & permutations)

{

 string numStr = to_string(num);

 // Digits in num

 vector<int> digits;

 for (auto c : numStr)

 {

 digits.push_back(static_cast<int>(c - '0'));

 }

 getAllPermutations(digits, 0, permutations);

}

/** Main **/

int main()

{

 // Get the input number

 uint32_t num;

 cin >> num;

68

 // TODO: Remove. Just to check all the numbers

 //for (num = 0; num < 100000; num++)

 //{

 Number_t numType = Other;

 // Get the reverse number

 uint32_t revNum = reverseNumber(num);

 // Check if num and revNum are primes

 bool numIsPrime = isPrime(num);

 bool revNumIsPrime = numIsPrime && isPrime(revNum);

 // To know the positions of the primes, calculate all of the primes until

the max of (num, revNum)

 uint32_t maxNum = 0;

 if (numIsPrime && revNumIsPrime)

 {

 maxNum = max(num, revNum);

 }

 // Calculate all the primes and their positions until maxNum (prime, pos)

 map<uint32_t, uint32_t> primeNumbers;

 uint32_t count = 0;

 for (uint32_t n = 1; n <= maxNum; n++)

 {

 if (isPrime(n))

 {

 count++;

 primeNumbers[n] = count;

 }

 }

 if (numIsPrime && revNumIsPrime)

 {

 // At least, they are friends

 numType = Friend;

 // Positions

 uint32_t posNum = primeNumbers[num];

 uint32_t posRevNum = primeNumbers[revNum];

 uint32_t revPosRevNum = reverseNumber(posRevNum);

 // Check for Sheldon prime

 if (posNum == revPosRevNum)

 {

 numType = SheldonPrime;

69

 }

 else

 {

 // Check for relative

 map<uint32_t, bool> permutationList;

 getPermutationList(posRevNum, permutationList);

 if (permutationList.find(posNum) != permutationList.end())

 {

 numType = Relative;

 }

 else

 {

 // Check for close friends

 bool isPosNumPrime = primeNumbers.find(posNum) !=

primeNumbers.end();

 bool isposRevNumPrime = primeNumbers.find(posRevNum) !=

primeNumbers.end();

 if (isPosNumPrime && isposRevNumPrime)

 {

 numType = CloseFriend;

 }

 }

 }

 }

 // Print the result

 switch (numType)

 {

 case Other:

 cout << "Number " << num << " is not related to Sheldon prime" <<

endl;

 break;

 case Friend:

 cout << "Number " << num << " is a friend of Sheldon prime" << endl;

 //cout << "Number " << num << " is friend" << endl;

 break;

 case CloseFriend:

 cout << "Number " << num << " is a close friend of Sheldon prime" <<

endl;

 //cout << "Number " << num << " is close friend" << endl;

 break;

 case Relative:

 cout << "Number " << num << " is a Sheldon prime relative" << endl;

 //cout << "Number " << num << " is relative" << endl;

70

 break;

 case SheldonPrime:

 cout << "Number " << num << " is a Sheldon prime!" << endl;

 break;

 default:

 cout << "ERROR" << endl;

 }

 return 0;

}

71

26 Chain Reaction
12 points

Introduction

We want to implement a simulation of how subatomic particles behave when a chain reaction
occurs. The first model is a very basic simplification, but it will help improving future versions.

The objective is to shoot a particle (the detonator) to space with particles (reactors) and figure out
the final state of the reaction.

The reactors particles are represented as circles with the following parameters:

• x: integer, position in x-axis

• y: integer, position in y-axis

• r: integer >0, particle radius

• e: integer >=0, reaction radius

The detonator particle is represented as reactors, but without reaction radius.
The simulation will start shooting the detonator to a given position.
All reactors colliding with the detonator will be hit and start a chain reaction.
When a reactor is hit, they will explode and hit any other reactors in the reaction radius.
To implement this simulation, we can use the formula to know if two circles intersect or not.

Given 2 A and B circles with parameters (x1,y1,r1) and (x2,y2,r2):

• Distance d between circles centers d = sqrt((x1 – x2)(x1 – x2) + (y1 – y2)(y1 – y2))

• If d <= r1 – r2: Circle B is inside A.

• If d <= r2 – r1: Circle A is inside B.

• If d < r1 + r2: Circle intersects each other.

• If d== r1 + r2: Circle A and B are in touch with each other.

• Otherwise, Circles A and B do not overlap.

We will consider that a particle is hit also when they are touched.

Input

A line with detonator impact coordinates and its radius.
A line with the number of particles (>=0).
A line per particle, with coordinates, radius and reaction radius

Output

A list with all particles, in the same order of input, saying if they were hit or not

72

Example 1 Example 2

Input Input

0 0 1 10 10 1

4 4

0 0 1 3 10 13 1 3

0 3 1 2 13 10 2 3

0 6 1 1 10 7 1 3

0 9 1 1 7 10 2 3

Output Output

(0, 0) HIT (10, 13) NOT HIT

(0, 3) HIT (13, 10) HIT

(0, 6) HIT (10, 7) NOT HIT

(0, 9) NOT HIT (7, 10) HIT

73

C++

#include <iostream>

#include <string>

#include <vector>

#include <sstream>

#include <math.h>

using namespace std;

float getDistance(int x1, int y1, int r1, int x2, int y2, int r2) {

 return sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2));

}

bool detonates(float distance, int r1, int r2) {

 if(distance <= (r1 - r2)) {

 return true;

 }

 if(distance <= (r2-r1)) {

 return true;

 }

 if(distance < (r1 + r2)) {

 return true;

 }

 if(distance == (r1 + r2)) {

 return true;

 }

 return false;

}

int main() {

 int detonator[3]; //[0]: x, [1]: y, [2]: r

 cin >> detonator[0] >> detonator[1] >> detonator[2];

 int nReactors;

 cin >> nReactors;

 vector<vector<int>> reactors;

 int value; //x, y, r, e

 for (int i = 0; i < nReactors; i++) {

 vector<int> reactor;

 for(int j = 0; j < 4; j++) {

 cin >> value;

 reactor.push_back(value);

74

 }

 reactors.push_back(reactor);

 }

 vector<int> hits;

 for(int i = 0; i < nReactors; i++) {

 hits.push_back(0);

 }

 float distance;

 for(int i = 0; i < nReactors; i++) {

 distance = getDistance(detonator[0], detonator[1], detonator[2],

reactors[i][0], reactors[i][1], reactors[i][2]);

 if(detonates(distance, detonator[2], reactors[i][2])) {

 hits[i] = 1;

 }

 }

 bool newDetonation = true;

 while(newDetonation) {

 newDetonation = false;

 for(int i = 0; i < nReactors; i++) {

 if(hits[i] == 1) {

 for(int j = 0; j < nReactors; j++) {

 if(j != i && hits[j] == 0) {

 distance = getDistance(reactors[i][0], reactors[i][1],

reactors[i][2], reactors[j][0], reactors[j][1], reactors[j][2]);

 if(detonates(distance, reactors[i][3], reactors[j][2]))

{

 hits[j] = 1;

 newDetonation = true;

 }

 }

 }

 }

 }

 }

 for(int i = 0; i < nReactors; i++) {

 cout << "(" << reactors[i][0] << ", " << reactors[i][1] << ") ";

 if(hits[i] == 0) {

 cout << "NOT HIT";

 } else {

 cout << "HIT";

 }

75

 if(i < nReactors-1) {

 cout << endl;

 }

 }

 return 0;

}

76

27 3D Box Drawing
13 points

Introduction

Drawing with ASCII characters is always fun. But let's go a step further and draw in 3D . To keep
things simple, we ask you just draw a box using its 3 dimensions as input; that is 3 positive integer
numbers corresponding to the box width, height and depth provided in this order. The characters to
use to depict the box are "_", "/ " and "\ ". Have fun!

 HINTS: Notice that horizontal line at the top has an extra character "_" versus the two
other horizontal lines. Also remember not to put any extra white space after the last
right drawing character of each row.

Input

The first line contains a single positive integer defining the width of the box.
The second line contains a single positive integer defining height of the box.
The third line contains a single positive integer defining the depth of the box.

Output

The representation in 3D of the corresponding box with the given dimensions.

Example 1 Example 2

Input Input

1 8

1 4

1

2

Output Output

_ _

/ _ / \

\ _ \ /

_ _ _ _ _ _ _ _ _

/ / \

/ _ _ _ _ _ _ _ _ / \

\ \ \

\ \ \

\ \ /

\ _ _ _ _ _ _ _ _ \ /

77

Example 3

Input

3

6

9

Output

_ _ _ _

/ / \

/ / \

/ / \

/ / \

/ / \

/ / \

/ / /

/ / /

/ _ _ _ / /

\ \ /

\ \ /

\ \ /

\ \ /

\ \ /

\ _ _ _ \ /

Python

width = int(input())

height = int(input())

depth = int(input())

Basic case

if (width == 1 and height == 1 and depth == 1):

 print(" __")

 print("/_/\\")

 print("_\/")

else:

 # build plane using width and depth

 row = ""

 # Drawing top line for top plane

 print("".join(depth*" ") + "".join((width+1)*"_"))

 currHeight = 0

 offset = 0

78

 row = "/" + "".join(width*" ")+ "/"

 for i in range(depth):

 output = ""

 if i == depth-1:

 # Drawing bottom line for top plane

 output = "/"+"".join(width*"_")+"/"

 else:

 # Drawing intermediate lines for top plane

 output = "".join((depth-i-1)*" ")+row

 if currHeight < height:

 # Adding height perspective

 offset = 2*currHeight

 output = output + "".join(offset*" ") + "\\"

 else:

 # Adding depth perspective once height is achieved

 output = output + "".join((offset+1)*" ") + "/"

 currHeight = currHeight + 1

 print (output)

 # ending the box considering the height

 row = "\\" + "".join(width*" ")+ "\\"

 for i in range(height-1):

 if currHeight <= height-1:

 # If height was not achieved continue building it

 output = "".join((i)*" ")+row +"".join((offset+1)*" ")+"\\"

 currHeight = currHeight + 1

 else:

 # Otherwise continue closing depth perspective

 output = "".join((i)*" ")+row +"".join(offset*" ")+"/"

 # discount one space for the left shifting and another for the right

perspective

 offset = offset - 2

 print (output)

 # Drawing bottom line for bottom plane

 print("".join((height-1)*" ") + "\\" + "".join(width*"_")+"\\"+"/")

79

28 Flags
14 points

Introduction

Lots of colors can be represented with RGB color model. RGB means: "Red" "Green" "Blue", because

these are the primary colors that, applying some combinations of light for every value, can become

to another color.

For each of these three colors, the light will be represented as an integer between 0 and 255 (both

included).

Let's see some examples:

Color= [R], [G], [B]
RED = [255], [0], [0]

GREEN = [0], [255], [0]
BLUE = [0], [0], [255]
BLACK = [0], [0], [0]

WHITE = [255], [255], [255]

So, to make, for example, a yellow color, we know that it is a composition of GREEN and RED:

YELLOW: [255], [255], [0]

With this color model you can represent and recognize colors.

This is a table with all the Spanish Communities’ flag colors, represented with RGB model. Every flag

has at least two colors. This table has the colors sorted by abundancy. So, the first color is the most

abundant color in the flag. In the table, there is a maximum of three color representations.

80

Table of Spanish Communities Flags

- Andalucia = [[0, 102, 51], [255, 255, 255],

[255, 228, 77]]

- Aragon = [[252, 221, 9], [218, 18, 26], [15, 71,

175]]

- Canarias = [[255, 255, 255], [7, 104, 169],

[255, 204, 0]]

- Cantabria = [[255, 255, 255], [237, 28, 36],

[0, 113, 188]]

- Castilla-La Mancha = [[162, 28, 28], [255,

204, 0], [0, 0, 0]]

- Castilla y Leon = [[116, 44, 100], [255, 255,

255], [252, 221, 9]]

- Catalunya = [[252, 221, 9], [218, 18, 26]]

- Comunidad de Madrid = [[198, 11, 30],

[255, 255, 255]]

- Comunidad Foral de Navarra = [[237, 45,

29], [227, 228, 229], [234, 193, 2]]

- Comunidad Valenciana = [[0, 114, 188],

[218, 18, 26], [252, 221, 9]]

- Extremadura = [[100, 0, 67], [255, 255,

255], [0, 0, 0]]

- Galicia = [[0, 153, 204], [255, 255, 255], [0,

91, 191]]

- Islas Baleares = [[252, 221, 9], [218, 18, 26],

[255, 255, 255]]

- La Rioja = [[181, 41, 33], [255, 255, 255], [0,

0, 0]]

- Pais Vasco = [[213, 43, 30], [255, 255,

255], [0, 155, 72]]

- Principado de Asturias = [[0, 102, 255],

[247, 212, 23]]

- Region de Murcia = [[156, 31, 45], [252,

183, 20]]

 HINTS: Notice that the list is sorted alphabetically. Also, there are no accents or special
characters like “ñ”. There is a .txt file where you can find this list in the “Guides and tools”
section.

81

Examples:

Comunidad de Madrid = [[198, 11, 30], [255, 255, 255]]

Comunidad Valenciana = [[0, 114, 188], [218, 18, 26], [252, 221, 9]]

Goal

We want you to write a program that, given a color or colors (maximum of three colors) represented
with RGB model, return the flag that best matches. If there is a tie, return all the flags that tied.

The rules are simple:
To compare two colors, we will sum the absolute difference for each RGB value. For example,
comparing:

[0, 0, 10] and [5, 0, 10] → The difference is (|0-5|+|0-0|+|10-10|) = 5

[255, 55, 0] and [0, 254, 10] → The difference is (|255-0|+|55-254|-|0-10|) = 466

82

If only one color is given, we compare
it with the most abundant color of

every flag (The first color on the
Community value).

If a second color is given, we
compare its match only to the

second color of every flag.

If a third color is given, we
compare its match only to the

third color of every flag.

 HINTS: Notice that if the input contains three colors, the communities’ flags with less

than three colors are not going to be considered as possible matches.

Input

One, two or three lines representing a color expressed using RGB color model.
A single character '#' marks the end of the input lines.

Output

Return the flag that best matches, or all the flags that tied with the first position.
Then, return the flag or flags with the second position.
For every flag returned, print its difference.
The output message must follow this format:

1st community flag: COMMUNITY with difference: DIFFERENCE
2nd community flag: COMMUNITY with difference: DIFFERENCE

If there's more than one flag for a position (for example, there is a tie-on 1st position), sort it
alphabetically and print the message with "flags" instead of "flag". For example:

1st community flags: COMMUNITY with difference: DIFFERENCE
1st community flags: COMMUNITY with difference: DIFFERENCE
2nd community flag: COMMUNITY with difference: DIFFERENCE

83

Example 1

Input

0 0 0

Output

1st community flag: Andalucia with difference: 153

2nd community flag: Extremadura with difference: 167

Example 2

Input

255 230 10

220 20 30

Output

1st community flags: Aragon with difference: 21

1st community flags: Catalunya with difference: 21

1st community flags: Islas Baleares with difference: 21

2nd community flag: Cantabria with difference: 301

Example 3

Input

252 221 9

218 18 26

200 200 200

Output

1st community flag: Islas Baleares with difference: 165

2nd community flag: Aragon with difference: 339

84

Python

flags = {} #flags[] = [] Spanish Community, RGB colors

flags['Andalucia'] = [[0, 102, 51], [255, 255, 255], [255, 228, 77]]

flags['Aragon'] = [[252, 221, 9], [218, 18, 26], [15, 71, 175]]

flags['Canarias'] = [[255, 255, 255], [7, 104, 169], [255, 204, 0]]

flags['Cantabria'] = [[255, 255, 255], [237, 28, 36], [0, 113, 188]]

flags['Castilla-La Mancha'] = [[162, 28, 28], [255, 204, 0], [0, 0, 0]]

flags['Castilla y Leon'] = [[116, 44, 100], [255, 255, 255], [252, 221, 9]]

flags['Catalunya'] = [[252, 221, 9], [218, 18, 26]]

flags['Comunidad de Madrid'] = [[198, 11, 30], [255, 255, 255]]

flags['Comunidad Foral de Navarra'] = [[237, 45, 29], [227, 228, 229], [234,

193, 2]]

flags['Comunidad Valenciana'] = [[0, 114, 188], [218, 18, 26], [252, 221, 9]]

flags['Extremadura'] = [[100, 0, 67], [255, 255, 255], [0, 0, 0]]

flags['Galicia'] = [[0, 153, 204], [255, 255, 255], [0, 91, 191]]

flags['Islas Baleares'] = [[252, 221, 9], [218, 18, 26], [255, 255, 255]]

flags['La Rioja'] = [[181, 41, 33], [255, 255, 255], [0, 0, 0]]

flags['Pais Vasco'] = [[213, 43, 30], [255, 255, 255], [0, 155, 72]]

flags['Principado de Asturias'] = [[0, 102, 255], [247, 212, 23]]

flags['Region de Murcia'] = [[156, 31, 45], [252, 183, 20]]

color = ""

colors = []

while color != "#":

 color = input()

 if color != "#":

 color = color.split(" ")

 colors.append(color)

communities_diff = {} #Dict to save all the differences

for k in flags.keys():

 communities_diff[k] = 0

for i in range(0, len(colors)):

 for k, v in flags.items():

 if len(v) <= i:

 del communities_diff[k]

 if k in communities_diff:

 for j in range(0, 3):

 if v[i][j] > int(colors[i][j]):

85

 communities_diff[k] = communities_diff[k] + (v[i][j] -

int(colors[i][j]))

 elif v[i][j] < int(colors[i][j]):

 communities_diff[k] = communities_diff[k] +

(int(colors[i][j]) - v[i][j])

#print(communities_diff)

winners_dict = {}

second_list = {}

winners_dict[min(communities_diff, key=communities_diff.get)] =

communities_diff[min(communities_diff, key=communities_diff.get)]

end = False

second_list_control = False

while(not end):

 if not second_list_control:

 maxValue = winners_dict[min(communities_diff, key=communities_diff.get)]

 else:

 maxValue = newValue

 second_list[min(communities_diff, key=communities_diff.get)] = maxValue

 del communities_diff[min(communities_diff, key=communities_diff.get)]

 newValue = communities_diff[min(communities_diff, key=communities_diff.get)]

 if(newValue != maxValue):

 if second_list_control == True:

 end = True

 second_list_control = True

 else:

 if second_list_control == False:

 winners_dict[min(communities_diff, key=communities_diff.get)] =

communities_diff[min(communities_diff, key=communities_diff.get)]

if len(winners_dict) > 1:

 for k, v in winners_dict.items():

 print("1st community flags:", k, "with difference:", v)

else:

 for k, v in winners_dict.items():

 print("1st community flag:", k, "with difference:", v)

if len(second_list) > 1:

 for k, v in second_list.items():

 print("2nd community flags:", k, "with difference:", v)

else:

 for k, v in second_list.items():

 print("2nd community flag:", k, "with difference:", v)

86

29 Top Pizza
15 points

Introduction

The restaurant Mario & Luigi cooks the best pizza in town, and it is so successful that thousands of
pizza orders are being received every day. This is the list of their delicious pizza types:

Rustica Romana

Prosciutto e funghi Funghi
Pesto Genovese Bianca
Carbonara Sicilian
California Hawaiian
Pinsa Romana Caprese
Vegetariana Quattro formaggi
Diavola Pepperoni
Quattro stagioni Calzone
Frutti di mare Margherita
Prosciutto Napoletana

 HINTS: There is a .txt file where you can find this list in the “Guides and tools” section.

Since certain pizza types are more requested than others, some of the pizza’s names occur many

times in the list of orders. At the end of the day Mario and Luigi want to know the total number of

pizzas correctly received. They also need to get the list of pizzas: sorted first by decreasing request

order and then alphabetically by name. If a pizza appears twice or more in the list, write the number

of repetitions just next to the pizza name. All pizza orders are digitally processed but unfortunately

due to communication errors sometimes an invalid pizza name is received. Your program must deal

with such incorrect names and list them by order of appearance at the end of the list without

considering if they are repeated.

Input

The input is formed by a list of the pizzas ordered by the end of each day. The list should be ended
by a hashtag ‘#’ character.

Output

The output reports the total number of valid pizza request received in a line with the format:

Received valid pizza requests: number

87

Followed by a list of the pizzas sorted first by number of requests then by name. In the case that a
pizza appears twice or more in the list, write the number of repetitions just next the pizza name.

Then a line containing three dashes ---

Followed by the total number of invalid requests:

Invalid requests: number

Finally, a list of the incorrect pizza names sorted by appearance, without considering if they are
repeated.

See the examples for clarification.

Example 1 Example 2

Input Input

Romana

Rumana

Pepperoni

Margherita

Margherita

Romana

Quattro formaggi

Quottro formagge

Output

Received valid pizza requests: 6

Margherita 2

Romana 2

Pepperoni

Quattro formaggi

Invalid requests: 2

Rumana

Quottro formagge

Rockmana

Piperoni

Sizilian

Diabolik

Output

Received valid pizza requests: 0

Invalid requests: 4

Rockmana

Piperoni

Sizilian

Diabolik

88

Example 3

Input Output

Diavola

Diavola

Diavola

Diavola

Diavola

Diavola

Calzone

Quattro stagioni

Frutti di mare

Frutti di mare

Calzone

Prosciutto

Romana

Calzone

Calzone

Diavola

Romana

Funghi

Bianca

Calzone

Sicilian

Calzone

Hawaiian

Calzone

Caprese

Quattro formaggi

Quattro formaggi

Pepperoni

Calzone

Received valid pizza requests: 29

Calzone 8

Diavola 7

Frutti di mare 2

Quattro formaggi 2

Romana 2

Bianca

Caprese

Funghi

Hawaiian

Pepperoni

Prosciutto

Quattro stagioni

Sicilian

Invalid requests: 0

89

C++

#include <iostream>

#include <string>

#include <map>

#include <vector>

using namespace std;

int main() {

 map<string, int> requests = {

 {"Bianca",0},

 {"California",0},

 {"Calzone",0},

 {"Caprese",0},

 {"Carbonara", 0},

 {"Diavola",0},

 {"Frutti di mare",0},

 {"Funghi",0},

 {"Hawaiian",0},

 {"Margherita",0},

 {"Napoletana",0},

 {"Pepperoni",0},

 {"Pesto Genovese", 0},

 {"Pinsa Romana",0},

 {"Prosciutto",0},

 {"Prosciutto e funghi", 0},

 {"Quattro formaggi",0},

 {"Quattro stagioni",0},

 {"Romana",0},

 {"Rustica", 0},

 {"Sicilian",0},

 {"Vegetariana",0}

 };

 std::map<string,int>::iterator it;

 int validCounter = 0;

 int invalidCounter = 0;

 vector<string> badPizzas;

 string pizza;

 getline (cin,pizza);

 int actualValue;

 while(pizza != "#"){

 it = requests.find(pizza);

90

 if(it != requests.end()) {

 validCounter++;

 actualValue = it->second;

 actualValue++;

 it->second = actualValue;

 }

 else{

 invalidCounter++;

 badPizzas.push_back(pizza);

 }

 getline (cin,pizza);

 }

 cout << "Received valid pizza requests: " << validCounter << endl;

 int maxValue;

 bool finish = false;

 string topPizza;

 while(finish == false){

 maxValue = 0;

 for(it = requests.begin(); it != requests.end(); it++){

 if(it->second > maxValue){

 maxValue = it->second;

 topPizza = it->first;

 }

 }

 it = requests.find(topPizza);

 it->second = 0;

 if(maxValue == 0) finish = true;

 else{

 cout << topPizza;

 if(maxValue > 1) {

 cout << " " << maxValue << endl;

 }

 else cout << endl;

 }

 }

 cout << "---" << endl;

 cout << "Invalid requests: " << invalidCounter;

 int size = badPizzas.size();

 if(size > 0) {

 cout << endl;

 }

 for(int i = 0; i < size; i++) {

 cout << badPizzas[i];

91

 if(i != size-1){

 cout << endl;

 }

 }

 return 0;

}

92

30 MotoHP
16 points

Introduction

The organizers of the MotoHP championship have suffered a short-circuit in their data centers and
have lost the program to elaborate the classifications after the races. They did not have a backup
of the algorithm, so they are counting on you to create a script that prints the results of the
championship, taking the riders info and the race results as inputs.

The MotoHP season consists of three competitions: one for riders, another one for the teams, and
one more for the brands of the motorbikes. This means that there are three different charts. As they
would like to use your script for future seasons, the number of riders, teams and brands can't be
known in advance.

The MotoHP races are very exciting, with many overtakes and lots of adrenaline on the track. Only
the first 7 riders get points, according to the following table:

1st 10p

2nd 8p
3rd 6p
4th 4p
5th 3p
6th 2p
7th 1p

8th to last 0p

The points are assigned to the rider, but also for their team and the brand of their motorbike. For
example, the rider in 2nd position gets 8 points, as well as their team (which might also get points for
other riders of that team) and the brand (which might also get points from other riders/teams using
that brand).

In order to promote speed on the track, the organization also awards the fastest lap rider with 1 extra
point. This point also goes for their team and brand.

In the most exciting seasons, there have been ties for first place in any of the three championships.
In these cases, the rider/team/brand with more wins along the season takes the first place, without
any modification in the points count.

Input

The input will consist of two parts.

1) The first part shows lines describing each rider, with their name (a three-letter abbreviation,
usually from their last name), the name of their team and the brand of motorbike.

2) A line containing“#” as separator.

93

3) The second part describes the results of the races in the championship. Each line is one

race, and it shows a list of the riders sorted by position (starting with the winner), separated
by “_” characters, and at the end a "|" separator and the name of the fastest lap rider

4) A final line containing “#”

Assumptions:

• There will always be at least 3 riders, 3 teams and 3 brands.

• A rider will only belong to one team during the entire season.

• A team will use one single motorbike brand for all its riders during the entire season.

• The number of race finishers is variable. This means that there can be races where there
are many riders that get 0 points, as well as races where there are so few finishers that
some point-awarded positions are empty.

• Only ties for 1st position must be solved. There can't be ties for the 2nd or 3rd position.

• The fastest lap rider can only redeem their extra point if they have finished the race
(regardless of position).

Output

As mentioned before, the output must consist of three classifications, each showing the top 3

riders/teams/brands with most points, along with the number of points and wins, using the following

structure:

Riders Classification:

1 - (rider name) - (rider points) pts - (rider wins) wins

2 - (rider name) - (rider points) pts - (rider wins) wins

3 - (rider name) - (rider points) pts - (rider wins) wins

Teams Classification:

1 - (team name) - (team points) pts - (team wins) wins

2 - (team name) - (team points) pts - (team wins) wins

3 - (team name) - (team points) pts - (team wins) wins

Brands Classification:

1 - (brand name) - (brand points) pts - (brand wins) wins

2 - (brand name) - (brand points) pts - (brand wins) wins

3 - (brand name) - (brand points) pts - (brand wins) wins

94

Example 1

Input

AAA SuperTeam Hondamm

BBB SuperTeam Hondamm

CCC MegaTeam Hondamm

DDD MegaTeam Hondamm

EEE UltraTeam YeahMaha

FFF UltraTeam YeahMaha

GGG NotSoGoodTeam Tuzuki

HHH NotSoGoodTeam Tuzuki

DDD_CCC_BBB_AAA_EEE_FFF_GGG_HHH|BBB

FFF_EEE_CCC_BBB_AAA_DDD_GGG_HHH|EEE

DDD_CCC_BBB_AAA_EEE_FFF_GGG_HHH|HHH

 HINT: Note that there will be a tie in points for the first place of the Riders championship
between riders DDD and CCC. However, DDD won 2 races and CCC 0.

Output

Riders Classification:

1 - DDD - 22 pts - 2 wins

2 - CCC - 22 pts - 0 wins

3 - BBB - 17 pts - 0 wins

Teams Classification:

1 - MegaTeam - 44 pts - 2 wins

2 - UltraTeam - 29 pts - 1 wins

3 - SuperTeam - 28 pts - 0 wins

Brands Classification:

1 - Hondamm - 72 pts - 2 wins

2 - YeahMaha - 29 pts - 1 wins

3 - Tuzuki - 4 pts - 0 wins

95

Python

MOTO GP WITH UNTIE

These dictionaries can be sorted by value

from collections import defaultdict

Data initialization

Dictionaries to link rider names to the teams and brands

namesToTeams = {}

namesToBrands = {}

Dictionaries to store the points and wins of the riders, the teams and the

brands

namesAndPoints = defaultdict(int)

namesAndWins = {}

teamsAndPoints = defaultdict(int)

teamsAndWins = {}

brandsAndPoints = defaultdict(int)

brandsAndWins = {}

Each position in the array is a position in the race

points = [10,8,6,4,3,2,1]

Helper function to encapsulate points assignment to a rider + team + brand

def assignPoints(rider, points):

 namesAndPoints[rider] += points

 teamsAndPoints[namesToTeams[rider]] += points

 brandsAndPoints[namesToBrands[rider]] += points

Helper function to encapsulate wins assignment to a rider + team + brand

def assignWins(rider):

 namesAndWins[rider] += 1

 teamsAndWins[namesToTeams[rider]] += 1

 brandsAndWins[namesToBrands[rider]] += 1

MAIN PROGRAM

Read riders info

line = input()

while(line != "#"):

 # Extract name, team and brand from every line

96

 riderInfo = line.split()

 name = riderInfo[0]

 team = riderInfo[1]

 brand = riderInfo[2]

 # Link names to teams and brands

 namesToTeams[name] = team

 namesToBrands[name] = brand

 # Initialize charts

 namesAndPoints[name] = 0

 namesAndWins[name] = 0

 teamsAndPoints[team] = 0

 teamsAndWins[team] = 0

 brandsAndPoints[brand] = 0

 brandsAndWins[brand] = 0

 line = input()

End of riders info

Now read races results

line = input()

while(line != "#"):

 # Part before "|" is a list of rider names separated by "_"

 raceResults = line.split("|")[0].split("_")

 # Part after "|" is string containing the fastest lap rider

 fastLapRider = line.split("|")[1]

 # Read only the riders that get points

 for i in range(min(len(points),len(raceResults))):

 rider = raceResults[i]

 # Assign points to the rider, the team and the brand

 assignPoints(rider, points[i])

 # Assign victory counts

 if (i == 0):

 assignWins(rider)

 # Assign extra point to the fastLapRider, only if he has finished the race

 if fastLapRider in raceResults:

 assignPoints(fastLapRider,1)

97

 line = input()

Now sort the charts according to the points

ridersClassification = sorted(namesAndPoints, key=namesAndPoints.get,

reverse=True)

#print(ridersClassification)

teamsClassification = sorted(teamsAndPoints, key=teamsAndPoints.get,

reverse=True)

#print(teamsClassification)

brandsClassification = sorted(brandsAndPoints, key=brandsAndPoints.get,

reverse=True)

#print(brandsClassification)

untie riders championship

first = ridersClassification[0]

second = ridersClassification[1]

thereIsTie = namesAndPoints[first] == namesAndPoints[second]

shouldSwap = namesAndWins[first] < namesAndWins[second]

if (thereIsTie and shouldSwap):

 ridersClassification.pop(0) # Remove it from the list

 ridersClassification.insert(1,first) # Add it back in 2nd place

untie teams championship

first = teamsClassification[0]

second = teamsClassification[1]

thereIsTie = teamsAndPoints[first] == teamsAndPoints[second]

shouldSwap = teamsAndWins[first] < teamsAndWins[second]

if (thereIsTie and shouldSwap):

 teamsClassification.pop(0) # Remove it from the list

 teamsClassification.insert(1,first) # Add it back in 2nd place

untie brands championship

first = brandsClassification[0]

second = brandsClassification[1]

thereIsTie = brandsAndPoints[first] == brandsAndPoints[second]

shouldSwap = brandsAndWins[first] < brandsAndWins[second]

if (thereIsTie and shouldSwap):

 brandsClassification.pop(0) # Remove it from the list

98

 brandsClassification.insert(1,first) # Add it back in 2nd place

Print the results (only the first three positions)

print("Riders Classification:")

for i in range(3):

 name = ridersClassification[i]

 print(i+1, "-", name, "-", namesAndPoints[name], "pts -",

namesAndWins[name], "wins")

print("Teams Classification:")

for i in range(3):

 name = teamsClassification[i]

 print(i+1, "-", name, "-", teamsAndPoints[name], "pts -",

teamsAndWins[name], "wins")

print("Brands Classification:")

for i in range(3):

 name = brandsClassification[i]

 print(i+1, "-", name, "-", brandsAndPoints[name], "pts -",

brandsAndWins[name], "wins")

99

31 Time Is Gold
25 points

Introduction

The subway system of Barcelona is one of the best ways to move around the city; it’s fast and
respectful with environment!

It has a system based on “Lines”, where each line is represented with a number and a color. Each line
is a set of Stations that one train will cross, in order.

For example, this is the first line, that is represented as L1 with the color red:

And this is the second line, represented as L2 with the color purple:

As you can see, there are some stations that have a connection with other lines, shown at the
bottom of the image. This means that these stations are also on other lines. So, if you want to go
from a station in L1, to a station in L2, you will have to change your train at some point. This is called a
TRANSFER.

We want you to make a program that, given a starting station and a goal station, returns the best
path to take.

To simplify the problem, we will consider only the first five lines of Barcelona’s subway system.

Each station has an associated time requirement (and only one, no matter which line it’s located on)
that represents how much time in seconds is required to reach it from any of its neighboring
stations.

Each transfer requires 300 extra seconds.

100

The tables below contain the stations and times grouped by lines. There is a .txt file where you can

find this list in the

 HINTS: There is a .txt file where you can find this list in the “Guides and tools” section.

Stations L1 Time

 Hospital de Bellvitge 100

 Bellvitge 108

 Av. Carrilet 204

 Rbla. Just Oliveras 173

 Can Serra 182

 Florida 130

 Torrassa 146

 Santa Eulalia 123

 Mercat Nou 197

 Placa de Sants 133

 Hostafrancs 164

 Espanya 149

 Rocafort 172

 Urgell 109

 Universitat 141

 Catalunya 190

 Urquinaona 166

 Arc de Triomf 217

 Marina 207

 Glories 280

 Clot 155

 Navas 216

 La Sagrera 186

 Fabra i Puig 210

 Sant Andreu 153

 Torras i Bages 138

 Trinitat Vella 146

 Baro de Viver 179

 Santa Coloma 104

 Fondo 144

Stations L2 Time

 Parallel 208

 Sant Antoni 163

 Universitat 141

 Passeig de Gracia 127

 Tetuan 217

 Monumental 152

 Sagrada Familia 114

 Encants 148

 Clot 155

 Bac de Roda 108

 Sant Marti 217

 La Pau 207

 Verneda 118

 Artigues Sant Adria 121

 Sant Roc 209

 Gorg 109

 Pep Ventura 212

 Badalona Pompeu Fabra 196

Stations L3 Time

 Zona Universitaria 165

 Palau Reial 216

 Maria Cristina 162

 Les Corts 164

 Placa del Centre 120

 Sants Estacio 204

 Tarragona 202

 Espanya 149

 Poble Sec 212

 Parallel 208

 Drassanes 176

 Liceu 176

 Catalunya 190

 Passeig de Gracia 127

 Diagonal 184

 Fontana 161

 Lesseps 197

 Vallcarca 203

 Penitents 106

 Vall d'Hebron 150

 Montbau 195

 Mundet 201

 Valldaura 136

 Canyelles 109

 Roquetes 206

 Trinitat Nova 162

101

Stations L4 Time

 La Pau 207

 Besos 209

 Besos de Mar 126

 El Maresme Forum 208

 Selva de Mar 187

 Poblenou 134

 Llacuna 178

 Bogatell 176

 Ciutadella Vila Olimpica 154

 Barceloneta 103

 Jaume I 126

 Urquinaona 166

 Passeig de Gracia 127

 Girona 213

 Verdaguer 182

 Joanic 135

 Alfons X 220

 Guinardo Hospital de Sant Pau 171

 Maragall 206

 Llucmajor 213

 Via Julia 135

 Trinitat Nova 162

Stations L5 Time

 Cornella Centre 201

 Gavarra 201

 Sant Ildefons 108

 Can Boixeres 216

 Can Vidalet 190

 Pubilla Cases 186

 Ernest Lluch 158

 Collblanc 149

 Badal 165

 Placa de Sants 133

 Sants Estacio 204

 Entenca 112

 Hospital Clinic 101

 Diagonal 184

 Verdaguer 182

 Sagrada Familia 114

 Sant Pau Dos de Maig 215

 Camp de l'Arpa 120

 La Sagrera 186

 Congres 120

 Maragall 206

 Virrei Amat 149

 Vilapicina 194

 Horta 175

 El Carmel 218

 El Coll La Teixonera 162

 Vall d'Hebron 150

Input

The input consists of 2 lines:

• The first line defines the starting station.

• The second line is the goal station

Output

The output consists of:

• The final time of the path, expressed as:
 Total time: _time_ seconds

• The final path:
 Best path from _source_ to _destination_: _source_, _station1_, _station2_, ..., _destination_

Important! It is not possible to tie, all the inputs have a unique solution.

102

Example 1

Input

Bellvitge

Hospital de Bellvitge

Output

Total time: 100 seconds

Best path from Bellvitge to Hospital de Bellvitge:

Bellvitge, Hospital de Bellvitge

Example 2

Input

Can Serra

Tetuan

Output

Total time: 2108 seconds

Best path from Can Serra to Tetuan:

Can Serra, Florida, Torrassa, Santa Eulalia, Mercat Nou, Placa de Sants,

Hostafrancs, Espanya, Rocafort, Urgell, Universitat, Passeig de Gracia,

Tetuan

Example 3

Input

Urgell

Clot

Output

Total time: 1354 seconds

Best path from Urgell to Clot:

Urgell, Universitat, Passeig de Gracia, Tetuan, Monumental, Sagrada Familia,

Encants, Clot

103

Python

from copy import copy

class Station:

 def __init__(self, name, line, time):

 self.name = name

 self.line = line

 self.time = time

 self.connections = []

 self.timeAcc = 0

 self.prevStation = None

 self.visited = False

 def __eq__(self, other):

 """Overrides the default implementation"""

 if isinstance(other, Station):

 return self.name == other.name

 return False

 def check(self, other):

 """Overrides the default implementation"""

 if isinstance(other, Station):

 return ((self.name == other.name) and (self.line == other.line))

 return False

 def addConnection(self, station):

 stationConection = copy(station)

 self.connections.append(stationConection)

 def visit(self, prevStation):

 self.prevStation = prevStation

 self.visited = True

 def mark(self):

 self.visited = True

 def asString(self):

 connectionsStr = "["

 for connection in self.connections:

 connectionsStr += "{} T-{} ".format(connection.name,

connection.time)

 connectionsStr += "]"

104

 return "{} L{} Time {} - Connections {}".format(self.name, self.line,

self.time, connectionsStr)

 def timeListFrom(self, originStation):

 time = [self.time]

 if (originStation == self.prevStation):

 return time + [originStation.time]

 else:

 time += self.prevStation.timeListFrom(originStation)

 return time

 def stationListFrom(self, originStation):

 stations = [self.name]

 if (originStation == self.prevStation):

 return stations + [originStation.name]

 else:

 stations += self.prevStation.stationListFrom(originStation)

 return stations

 def print(self):

 print(self.asString())

class QueueStations:

 def __init__(self):

 self.queue = []

 def size(self):

 return len(self.queue)

 def empty(self):

 return (len(self.queue) == 0)

 def append(self, station):

 self.queue.append(station)

 def pop(self):

 index = -1

 time = 9999

 for i, station in enumerate(self.queue):

 if (station.time < time):

 index = i

 return self.queue.pop(index)

 def popSimple(self):

 return self.queue.pop(0)

 def print(self):

105

 for s in self.queue:

 print("Q - {}".format(s.asString()))

def isTransfer2(s1, s2, s3, lines):

 return getLine(s1, s2, lines) != getLine(s2, s3, lines)

def getLine(s1, s2, lines):

 for i in range(len(lines)):

 if s1 in lines[i] and s2 in lines[i]:

 return i

 return -1

def getStation(name, stations):

 for s in stations:

 if s.name == name:

 return s

 return None

def validate_solution(path, lines, stations):

 # Validate solution

 time = 0

 for i in range(len(path)):

 station = path[i]

 trans = False

 stationObj = getStation(station, stations)

 if i > 1 and isTransfer2(path[i-2], path[i-1], path[i], lines):

 trans = True

 time += 300

 print("Time {:5d}, +300, --- TRANSFER ---".format(time))

 if i > 0:

 time += stationObj.time

 line = getLine(path[i], path[i-1], lines) + 1

 else:

 line = getLine(path[i], path[i+1], lines) + 1

 print("Time {:5d}, +{:3d}, L {} {}".format(time, stationObj.time, line,

stationObj.name))

L1Names = ["Hospital de Bellvitge", "Bellvitge", "Av. Carrilet", "Rbla. Just

Oliveras", "Can Serra", "Florida","Torrassa", "Santa Eulalia", "Mercat Nou",

"Placa de Sants", "Hostafrancs", "Espanya", "Rocafort","Urgell", "Universitat",

"Catalunya", "Urquinaona", "Arc de Triomf", "Marina", "Glories", "Clot",

"Navas","La Sagrera", "Fabra i Puig", "Sant Andreu", "Torras i Bages", "Trinitat

Vella", "Baro de Viver", "Santa Coloma", "Fondo"]

L1Times = [100, 108, 204, 173, 182, 130, 146, 123, 197, 133, 164, 149, 172, 109,

141, 190, 166, 217, 207, 280, 155,216, 186, 210, 153, 138, 146, 179, 104, 144]

106

L2Names = ["Parallel", "Sant Antoni", "Universitat", "Passeig de Gracia",

"Tetuan", "Monumental", "Sagrada Familia", "Encants", "Clot", "Bac de Roda",

"Sant Marti", "La Pau", "Verneda", "Artigues Sant Adria","Sant Roc", "Gorg",

"Pep Ventura", "Badalona Pompeu Fabra"]

L2Times = [208, 163, 141, 127, 217, 152, 114, 148, 155, 108, 217, 207, 118, 121,

209, 109, 212, 196]

L3Names = ["Zona Universitaria", "Palau Reial", "Maria Cristina", "Les Corts",

"Placa del Centre", "Sants Estacio", "Tarragona", "Espanya", "Poble Sec",

"Parallel", "Drassanes", "Liceu", "Catalunya", "Passeig de Gracia", "Diagonal",

"Fontana", "Lesseps", "Vallcarca", "Penitents", "Vall d'Hebron",

"Montbau","Mundet", "Valldaura", "Canyelles", "Roquetes", "Trinitat Nova"]

L3Times = [165, 216, 162, 164, 120, 204, 202, 149, 212, 208, 176, 176, 190, 127,

184, 161, 197, 203, 106, 150,195, 201, 136, 109, 206, 162]

L4Names = ["La Pau", "Besos", "Besos de Mar", "El Maresme Forum", "Selva de

Mar", "Poblenou", "Llacuna","Bogatell", "Ciutadella Vila Olimpica",

"Barceloneta", "Jaume I", "Urquinaona", "Passeig de Gracia","Girona",

"Verdaguer", "Joanic", "Alfons X", "Guinardo Hospital de Sant Pau", "Maragall",

"Llucmajor","Via Julia", "Trinitat Nova"]

L4Times = [207, 209, 126, 208, 187, 134, 178, 176, 154, 103, 126, 166, 127, 213,

182, 135, 220, 171, 206, 213,135, 162]

L5Names = ["Cornella Centre", "Gavarra", "Sant Ildefons", "Can Boixeres", "Can

Vidalet", "Pubilla Cases","Ernest Lluch", "Collblanc", "Badal", "Placa de

Sants", "Sants Estacio", "Entenca", "Hospital Clinic","Diagonal", "Verdaguer",

"Sagrada Familia", "Sant Pau Dos de Maig", "Camp de l'Arpa", "La

Sagrera","Congres", "Maragall", "Virrei Amat", "Vilapicina", "Horta", "El

Carmel", "El Coll La Teixonera", "Vall d'Hebron"]

L5Times = [201, 201, 108, 216, 190, 186, 158, 149, 165, 133, 204, 112, 101, 184,

182, 114, 215, 120, 186, 120, 206,149, 194, 175, 218, 162, 150]

LNames = [L1Names, L2Names, L3Names, L4Names, L5Names]

LTimes = [L1Times, L2Times, L3Times, L4Times, L5Times]

stations = []

for i in range(5):

 stationsInLine = []

 lName = LNames[i]

 lTime = LTimes[i]

 # Create all stations in Line

 for index, name in enumerate(lName):

 station = Station(name, i+1, lTime[index])

 stationsInLine.append(station)

 # Make connections in line

 N = len(stationsInLine)

 for index, station in enumerate(stationsInLine):

107

 if (index != 0):

 station.addConnection(stationsInLine[index-1])

 if (index != (N-1)):

 station.addConnection(stationsInLine[index+1])

 # Make connections with other lines

 for indexInLine, stationInLine in enumerate(stationsInLine):

 for indexGlobal, stationGlobal in enumerate(stations):

 if (stationInLine == stationGlobal):

 stationInLine.addConnection(stationGlobal)

 stationGlobal.addConnection(stationInLine)

 # Add stations in line to global station list

 for station in stationsInLine:

 stations.append(station)

startName = input()

endName = input()

queueToExplore = QueueStations()

startStation = []

endStation = []

for station in stations:

 if station.name == startName:

 station.mark()

 queueToExplore.append(station)

 startStation.append(station)

 if station.name == endName:

 endStation.append(station)

while (not queueToExplore.empty()):

 stationPop = queueToExplore.popSimple()

 if (stationPop.name != endName):

 for connection in stationPop.connections:

 for station in stations:

 if ((connection.check(station)) and (not station.visited)):

 station.visit(stationPop)

 queueToExplore.append(station)

bestTime = 999999

bestSIndex = -1

bestEIndex = -1

for i, sStation in enumerate(startStation):

108

 for j, eStation in enumerate(endStation):

 stationTravelList = eStation.stationListFrom(sStation)

 timeTravelList = eStation.timeListFrom(sStation)

 travelListNoRepeats = []

 timeListWithTransferTime = []

 for index, stationName in enumerate(stationTravelList):

 if (stationName in travelListNoRepeats):

 timeListWithTransferTime.append(300)

 else:

 travelListNoRepeats.append(stationName)

 timeListWithTransferTime.append(timeTravelList[index])

 timeListWithTransferTime.reverse()

 timeListWithTransferTime.pop(0)

 timeTravel = sum(timeListWithTransferTime)

 if (timeTravel < bestTime):

 bestTime = timeTravel

 bestSIndex = i

 bestEIndex = j

stationTravelList =

endStation[bestEIndex].stationListFrom(startStation[bestSIndex])

timeTravelList = endStation[bestEIndex].timeListFrom(startStation[bestSIndex])

travelListNoRepeats = []

timeListWithTransferTime = []

for index, stationName in enumerate(stationTravelList):

 if (stationName in travelListNoRepeats):

 timeListWithTransferTime.append(300)

 else:

 travelListNoRepeats.append(stationName)

 timeListWithTransferTime.append(timeTravelList[index])

timeListWithTransferTime.reverse()

timeListWithTransferTime.pop(0)

timeTravel = sum(timeListWithTransferTime)

travelListNoRepeats.reverse()

path = ", ".join(travelListNoRepeats)

print("Total time: {} seconds".format(timeTravel))

print("Best path from {} to {}:".format(startName, endName))

print("{}".format(path))

109

32 Mutant Mushrooms
30 points

Introduction

Doctor Crazyus Maximus has found a mechanism to manipulate the DNA of mushrooms to make

them replicate at a very fast rate, but this genetic manipulation shows a very strange effect:

depending on the mutation type, the mushrooms are replicated following specific patterns.

After some experimentation, Crazyus found 4 relevant facts:

1. When mushrooms replicate, they do not fill a space which is already filled with some other

mushroom of the same species.

2. The mutant mushrooms replication is quite aggressive, and they destroy other species. It

seems that there is one gene of the mutation process that is determining the resilience of

the mushroom, thus the mushrooms with higher resilience are the ones that prevail in case

of direct contact. You can assume that different mushrooms will never have the same

resilience.

3. The growth of the mutant mushrooms is very fast, but also their death. It seems that there is

another gene that defines how many days a mushroom will be alive, with no error. Luckily, the

“age” of the mushroom is not inherited when the mushroom is replicated, so new

mushrooms can have their own life, starting from 0.

4. Once a mushroom passes its maximum age, it stops replicating and dies, leaving the space

empty at the end of the day. But the mushroom will still be present during the day, so

surrounding mushrooms of the same type won’t be able to replicate on it.

Can you help Doctor Crazyus to study the mutant mushrooms with your program to simulate their

behaviour?

110

Input

The input is structured as follows:

- A line with a positive integer, indicating how many species of mutant mushrooms will be
simulated

- For each of the mushroom species:

o A line with a character representing the label for the mushroom.

o A line with 2 positive integers, the first one being the resilience of the mushroom
and the second one the number of days of life for the mushroom. To avoid having a
dirty output, the number of days is limited in the range [0, 9].

o A line with 2 positive integers, being the first one the rows of the mushroom growth

pattern and the second one the columns of the pattern.

o The growth pattern, represented by a grid of 0s and 1s.

- A line with 2 positive integers: the rows and the columns of the simulated experiment.

- The simulated experiment, which is formed by a regular grid according to the provided
dimensions. The map indicates the initial places for the mushroom species (it may be more
than one initial place for each species). The character ‘.’ indicates an empty space that can
be covered by a mushroom, and the character ’_’ indicates a space outside the simulation
(so it must never be covered).

- A line with a positive integer indicating the number of days for the simulation.

NOTE: When applying the mushroom growth pattern, the mushroom is always in the center. So,
you can assume that the growth pattern dimensions are always odd numbers.

Output

The program must show the status of the simulation on each day, representing all the mushrooms

that are alive and their age (see the example below).

111

Example

Input

3

A

30 4

3 3

010

101

010

C

20 5

5 5

10001

01010

00000

01010

10001

L

10 6

3 5

11000

10000

10011

12 22

A.............._.....L

..............__......

......__......__......

......__..............

................__....

................__....

..........__..........

............__........

.....__...............

.....__...............

112

...........__.........

C......__............L

6

Output

Mushrooms at day 0

A.............._.....L 0.............._.....0

..............__...... __......

......__......__...... __......__......

......__.............. __..............

................__.... __....

................__.... __....

..........__.......... __..........

............__........ __........

.....__............... __...............

.....__............... __...............

...........__......... __.........

C......__............L 0......__............0

Mushrooms at day 1

AA............._...L.L 10............._...0.1

A.............__...L.. 0.............__...0..

......__......__...... __......__......

......__.............. __..............

................__.... __....

................__.... __....

..........__.......... __..........

............__........ __........

.....__............... __...............

..C..__............... ..0..__...............

.C.........__......LL. .0.........__......00.

113

C......__..........L.L 1......__..........0.1

Mushrooms at day 2

AAA............_.LLL.L 210............_.001.2

AA............__.L.LLL 10............__.0.100

A.....__......__.L..LL 0.....__......__.0..00

......__.............. __..............

................__.... __....

................__.... __....

..........__.......... __..........

C...C.......__........ 0...0.......__........

.C.C.__............... .0.0.__...............

C.C..__..........LLL.. 0.1..__..........000..

.C.C.......__....LLLL. .1.0.......__....0011.

C.C.C..__........LLLLL 2.0.0..__........00102

Mushrooms at day 3

AAAA..........._LLLLLL 3210..........._011203

AAA...........__LLLLLL 210...........__010211

AA....__......__.LLLLL 10....__......__.10011

A.....__.......L..LL.L 0.....__.......0..00.0

................__.... __....

..C...C.........__.... ..0...0.........__....

.C.C.C....__.......... .0.0.0....__..........

C.C.C.......__........ 1.0.1.......__........

.C.C.__........LLLL... .1.1.__........0000...

C.C.C__........LLLLL.. 1.2.0__........00111..

.C.C.C.....__..LLLLLLL .2.1.0.....__..0011220

C.C.C..__......LLLLLLL 3.1.1..__......0011213

114

Mushrooms at day 4

.AAAA.........L_LLLLLL .3210.........0_122314

AAAA..........__LLLLLL 3210..........__121322

AAA...__.....L__LLLLLL 210...__.....0__021122

AA..C.__C....L.LLLLLLL 10..0.__0....0.1001101

AC.C.C.C.....L..__.LLL 00.0.0.0.....0..__.000

C.C.C.C.........__.... 0.1.0.1.........__....

.C.C.C.C..__.......... .1.1.1.0..__..........

C.C.C.C.C...__LLLL.... 2.1.2.0.0...__0000....

.C.C.__C.....LLLLLL... .2.2.__0.....001111...

C.C.C__......LLLLLLLL. 2.3.1__......00112220.

.C.C.C.....__LLLLLLLLL .3.2.1.....__001122331

C.C.C.C__....LLLLLLLLL 4.2.2.0__....001122324

Mushrooms at day 5

..AAAA......L.L_LLLLLL ..3210......0.1_233425

.AAAA.C...CLL.__LLLLLL .3210.0...000.__232433

AAAA.C__.C.LLL__LLLLLL 3210.0__.0.001__132233

AAA.C.__C..LLLLLLLLLLL 210.1.__1..00102112212

AA.C.C.C.C.L.LLL__LLLL 10.1.1.1.0.0.100__0111

A.C.C.C.C.CL..LL__LLLL 0.2.1.2.0.00..00__0000

.C.C.C.C.C__LLLLL..... .2.2.2.1.0__00000.....

C.C.C.C.C..L__LLLL.... 3.2.3.1.1..0__1111....

.C.C.__C.C.LLLLLLLLL.. .3.3.__1.0.001122220..

C.C.C__.C.CLLLLLLLLLL. 3.4.2__.0.00011223331.

.C.C.C.C.C.__LLLLLLLLL .4.3.2.0.0.__112233442

..C.C.C__..LLLLLLLLLLL ..3.3.1__..00112233435

115

Mushrooms at day 6

...AAAAC.CLCL.L_LLLLL. ...32100.0001.2_34453.

..AAAAC.CLCLLL__LLLLLL ..32101.001110__343544

.AAAAC__.CLCLL__LLLLLL .32101__.10012__243344

AAAAC.__CLCLCLLLLLLLLL 32102.__20010213223323

AAAC.C.C.CLCLLLL__LLLL 2102.2.2.1000211__1222

AAC.C.C.CLCLLLLL__LLLL 103.2.3.10110011__1111

AC.C.C.C.C__LLLLLLLLLL 03.3.3.2.1__1111100000

C.C.C.C.CLCL__LLLLL... 4.3.4.2.2001__22220...

.C.C.__C.CLCLLLLLLLL.. .4.4.__2.10012233331..

C...C__.CLCLLLLLLLLLLL 4...3__.10111223344420

...C.C.C.CL__LLLLLLLLL ...4.3.1.10__223344553

..C.C.C__LCLCLLLLLLLL. ..4.4.2__001022334454.

116

C++

#include <iostream>

#include <string>

#include <vector>

#include <map>

#include <cassert>

struct Mushroom

{

 char label = '.';

 int age = 0;

 int ageOfDeath = 0;

 int power = 0;

 std::vector<std::string> pattern;

 void kill()

 {

 label = '.';

 age = 0;

 ageOfDeath = 0;

 power = 0;

 pattern.resize(0);

 }

};

void printGrid(const std::vector<std::vector<Mushroom>>& grid, int day)

{

 std::cout << "Mushrooms at day " << day << std::endl;

 for (size_t row = 0; row < grid.size(); ++row)

 {

 for (size_t col = 0; col < grid[row].size(); ++col)

 {

 std::cout << grid[row][col].label;

 }

 std::cout << " ";

 for (size_t col = 0; col < grid[row].size(); ++col)

 {

 if (grid[row][col].label == '.' || grid[row][col].label == '_')

 {

 std::cout << grid[row][col].label;

 }

 else

 {

 std::cout << grid[row][col].age;

 }

 }

117

 std::cout << std::endl;

 }

 std::cout << std::endl;

}

std::map< char, Mushroom> parseMushrooms()

{

 int numMushrooms;

 std::cin >> numMushrooms;

 std::map<char, Mushroom> mushrooms;

 for (int i = 0; i < numMushrooms; ++i)

 {

 Mushroom mushroom;

 int rows, cols;

 std::cin >> mushroom.label >> mushroom.power >> mushroom.ageOfDeath >>

rows >> cols;

 mushroom.pattern.resize(rows);

 for (int row = 0; row < rows; ++row)

 {

 std::cin >> mushroom.pattern[row];

 assert(mushroom.pattern[row].size() == cols);

 }

 mushrooms[mushroom.label] = mushroom;

 }

 return mushrooms;

}

std::vector<std::vector<Mushroom>> parseGrid(const std::map<char, Mushroom>&

mushrooms)

{

 // Parse the input grid as strings

 int rows, cols;

 std::cin >> rows >> cols;

 std::vector<std::string> gridChars(rows);

 std::getline(std::cin, gridChars[0]);

 for (size_t row = 0; row < gridChars.size(); ++row)

 {

 std::cin >> gridChars[row];

 }

 // Convert the input characters to mushrooms

 Mushroom noMushroom;

 noMushroom.label = '.';

 std::vector<std::vector<Mushroom>> grid(gridChars.size(),

std::vector<Mushroom>(gridChars[0].size()));

 for (size_t row = 0; row < grid.size(); ++row)

 {

 for (size_t col = 0; col < grid[row].size(); ++col)

118

 {

 if (gridChars[row][col] == '.')

 {

 grid[row][col].label = '.';

 }

 else if (gridChars[row][col] == '_')

 {

 grid[row][col].label = '_';

 }

 else

 {

 auto iterator = mushrooms.find(gridChars[row][col]);

 assert(iterator != mushrooms.end());

 grid[row][col] = iterator->second;

 }

 }

 }

 return grid;

}

void applyMushroomGrowth(

 const Mushroom& srcMushroom,

 std::vector<std::vector<Mushroom>>& dstGrid,

 size_t row, size_t col)

{

 int patternHalfRows = srcMushroom.pattern.size() / 2;

 int patternHalfCols = srcMushroom.pattern[0].size() / 2;

 for (size_t rPat = 0; rPat < srcMushroom.pattern.size(); ++rPat)

 {

 for (size_t cPat = 0; cPat < srcMushroom.pattern[rPat].size(); ++cPat)

 {

 if (srcMushroom.pattern[rPat][cPat] == '1')

 {

 int r = int(row) - patternHalfRows + int(rPat);

 int c = int(col) - patternHalfCols + int(cPat);

 if (r >= 0 && c >= 0 && r < dstGrid.size() && c <

dstGrid[0].size())

 {

 if (dstGrid[r][c].label != '_')

 {

 if (dstGrid[r][c].label == '.' ||

 ((dstGrid[r][c].label != srcMushroom.label) &&

(srcMushroom.power > dstGrid[r][c].power)))

 {

 dstGrid[r][c] = srcMushroom;

 dstGrid[r][c].age = 0;

 }

119

 }

 }

 }

 }

 }

}

int main()

{

 std::vector<std::vector<Mushroom>> grid = parseGrid(parseMushrooms());

 int days;

 std::cin >> days;

 for (int day = 0; day < days; ++day)

 {

 printGrid(grid, day);

 // Increase the age of the mushrooms

 for (size_t row = 0; row < grid.size(); ++row)

 {

 for (size_t col = 0; col < grid[row].size(); ++col)

 {

 if (grid[row][col].label != '.' && grid[row][col].label != '_')

 {

 ++grid[row][col].age;

 }

 }

 }

 // Make the mushrooms grow (only those that are still alive)

 std::vector<std::vector<Mushroom>> newGrid = grid;

 for (size_t row = 0; row < grid.size(); ++row)

 {

 for (size_t col = 0; col < grid[row].size(); ++col)

 {

 if (grid[row][col].label != '.' && grid[row][col].label != '_'

 && (grid[row][col].age < grid[row][col].ageOfDeath))

 {

 applyMushroomGrowth(grid[row][col], newGrid, row, col);

 }

 }

 }

 // Kill all the mushrooms that reached the age of death

 for (size_t row = 0; row < newGrid.size(); ++row)

 {

 for (size_t col = 0; col < newGrid[row].size(); ++col)

 {

 if (newGrid[row][col].label != '.' && newGrid[row][col].label !=

'_' && newGrid[row][col].age >= newGrid[row][col].ageOfDeath)

 {

120

 newGrid[row][col].kill();

 }

 }

 }

 // Update the grid with the new grid

 grid.swap(newGrid);

 }

 printGrid(grid, days);

 return 0;

}

121

33 Voxels
35 points

Introduction

We need a program to draw an orthographic projection of a 3D model (this is the projection of the
model in 2 dimensions), which is represented by a set of voxels (a voxel is a cube positioned in the
space according to the 3D coordinates (x, y, z)).
The 6 projections are:

View name Projection axes View axis
FRONT xy +z
REAR xy -z
TOP xz +y
BOTTOM xy -y
LEFT zy +x
RIGHT zy -x

An example of the 3D model, formed by 4 voxels of different color (the orange one is hidden in the
image), and their 6 orthographic projections:

We want to draw only the voxel's edges that are visible and are not touching other edges, as shown

in the image below:

122

Input

The first line indicates the type of projection.

The second line is a positive integer that indicates the number of voxels forming the 3D model.

Finally, the sequence of voxels of the 3D model, each one of them defined by a triplet of "X Y Z"
coordinates. Each coordinate is an integer in the range [0, 10].

Output

Voxels are drawn using '+', '-' and '|' symbols.

This is the representation of a single voxel:

+-+
| |
+-+

The output must be the 2D projection of the input 3D model according to the provided projection
type, within a drawing space of 11x11 voxels (see the examples below).

The drawing space is framed by # symbols.

Notice that the origin of coordinates (0, 0) of each 2D projection is a different corner of the drawing
space.

123

Example 1

Input

FRONT

38

2 0 3

3 0 3

4 0 3

5 0 3

6 0 3

2 1 3

3 1 3

4 1 3

5 1 3

6 1 3

2 2 3

3 2 3

4 2 3

5 2 3

6 2 3

3 0 4

4 0 4

5 0 4

3 1 4

4 1 4

5 1 4

1 9 0

1 8 0

1 7 0

2 9 0

2 7 0

3 9 0

3 7 0

5 9 0

5 8 0

Output

#########################

+-+-+-+ +-+ +-+ #
| | | | | | #
+ +-+-+ + + +-+ + + #
| | | | | | | | #
+ +-+-+ + +-+ +-+ + #
| | | | #
+-+-+-+ +-+-+-+-+-+ #

+-+-+-+-+-+ #
| | #
+ +-+-+-+ + #
| | | | #
+ + + + #
| | | | #
+-+-+-+-+-+ #
#########################

124

5 7 0

6 7 0

7 8 0

7 7 0

8 7 0

9 9 0

9 8 0

9 7 0

125

Example 2

Input

TOP

13

2 1 5

3 1 5

4 1 5

5 1 5

6 1 5

2 1 6

3 1 6

4 1 6

6 1 6

2 2 5

3 2 5

2 2 6

3 2 6

Output

#########################

+-+-+-+-+-+ #
| | | #
+ + +-+ + #
| | | | | #
+-+-+-+ +-+ #

#########################

C++

#include <iostream>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

constexpr int MAX_COORD = 10;

struct Voxel

{

 int x, y, z;

 Voxel(int xx, int yy, int zz) : x(xx), y(yy), z(zz) {};

};

void project(const vector<Voxel> &voxels, std::string projection)

{

126

 // Projection axis

 // Y

 // ^

 // |

 // |

 // |

 // |

 // /---------> X

 // / (0,0,0)

 // /

 // Z

 vector<int> X; // Horizontal axis

 vector<int> Y; // Vertical axis

 vector<int> Z; // Depth axis

 // We will store the (x,y,z) points based on the projection

 // to simplify the rasterization process

 for (auto voxel : voxels)

 {

 if (projection == "FRONT")

 {

 X.push_back(voxel.x);

 Y.push_back(voxel.y);

 Z.push_back(voxel.z);

 }

 else if (projection == "REAR")

 {

 X.push_back(MAX_COORD-voxel.x);

 Y.push_back(voxel.y);

 Z.push_back(MAX_COORD-voxel.z);

 }

 else if (projection == "TOP")

 {

 X.push_back(voxel.x);

 Y.push_back(MAX_COORD-voxel.z);

 Z.push_back(voxel.y);

 }

 else if (projection == "BOTTOM")

 {

 X.push_back(voxel.x);

 Y.push_back(voxel.z);

 Z.push_back(MAX_COORD-voxel.y);

 }

 else if (projection == "RIGHT")

 {

 X.push_back(voxel.z);

 Y.push_back(voxel.y);

127

 Z.push_back(voxel.x);

 }

 else if (projection == "LEFT")

 {

 X.push_back(MAX_COORD-voxel.z);

 Y.push_back(voxel.y);

 Z.push_back(MAX_COORD-voxel.x);

 }

 else

 {

 cout << "INVALID VIEW " << projection << endl;

 return;

 }

 }

 // Length of each axis (both included)

 int len = MAX_COORD + 1;

 // Matrix with z-depth map: each cell represent the depth of each x,y

coordinate

 vector<vector<int>> zmap(len, vector<int>(len, -1));

 // painter algorithm: raster from far to near

 for (int depth = 0; depth < len; depth++)

 {

 for (int i = 0; i < voxels.size(); ++i)

 {

 if (Z[i] == depth)

 {

 zmap[X[i]][Y[i]] = depth;

 }

 }

 }

 auto leftEdge = [&](int x, int y) { return (x == 0 or zmap[x][y] !=

zmap[x-1][y]); };

 auto rightEdge = [&](int x, int y) { return (x == len-1 or zmap[x][y] !=

zmap[x+1][y]); };

 auto topEdge = [&](int x, int y) { return (y == 0 or zmap[x][y] !=

zmap[x][y-1]); };

 auto bottomEdge = [&](int x, int y) { return (y == len-1 or zmap[x][y] !=

zmap[x][y+1]); };

 // Matrix with the projection

 // Note that the matrix is transpoed in order to draw X in horizontal axis

and Y in vertical axis

 vector<vector<char>> proj(len*2+1, vector<char>(len*2+1, ' '));

128

 // draw projection

 for (int i = 0; i < len; ++i)

 {

 for (int j = 0; j < len; ++j)

 {

 const int pi = i*2 + 1;

 const int pj = j*2 + 1;

 if (zmap[i][j] >= 0)

 {

 if (leftEdge(i,j)) proj[pj][pi-1] =

'|';

 if (rightEdge(i,j)) proj[pj][pi+1] =

'|';

 if (topEdge(i,j)) proj[pj-1][pi] =

'-';

 if (bottomEdge(i,j)) proj[pj+1][pi] =

'-';

 if (leftEdge(i,j) or topEdge(i,j)) proj[pj-1][pi-1] =

'+';

 if (leftEdge(i,j) or bottomEdge(i,j)) proj[pj+1][pi-1] =

'+';

 if (rightEdge(i,j) or topEdge(i,j)) proj[pj-1][pi+1] =

'+';

 if (rightEdge(i,j) or bottomEdge(i,j)) proj[pj+1][pi+1] =

'+';

 }

 }

 }

 char border = '#';

 cout << std::string(11*2+3, border) << endl;

 for (int i = proj.size() - 1; i >= 0; --i)

 {

 cout << border;

 for (int j = 0; j < proj.front().size(); ++j)

 {

 cout << proj[i][j];

 }

 cout << border << endl;

 }

 cout << std::string(11*2+3, border) << endl;

}

int main()

{

 string projection;

 cin >> projection;

129

 int numVoxels;

 cin >> numVoxels;

 vector<Voxel> voxels;

 {

 int x, y, z;

 while (cin >> x >> y >> z)

 {

 // Just for debug, all inputs must be correct

 if (x > MAX_COORD or x < 0) return 0;

 if (y > MAX_COORD or y < 0) return 0;

 if (z > MAX_COORD or z < 0) return 0;

 voxels.push_back(Voxel(x,y,z));

 }

 }

 project(voxels, projection);

 // Just for debug, all inputs must be correct

 if (voxels.size() != numVoxels)

 {

 cout << endl << "WARNINIG: More voxels than specified!" << endl;

 }

 return 0;

}

